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Abstract— The transverse, dynamic deflection of high speed, 

wide faced, composite tubular rolls is investigated.  General 

procedures are proposed enabling the analysis of inter-connected 

units comprising both distributed parameter and rigid, point-

wise models.  Modelling methods, eliminating intermediate 

variables are employed facilitating the realization of an overall 

system, input – output representation.  An illustrative study, 

detailing the analysis and evaluation process is presented.  A high 

speed, MG paper making machine, table roll application is 

considered.  Whirling conditions and the effect of this problem on 

sheet quality and manufacturing output is commented upon. 

 

Keywords— wide, tubular, rolls, whirling, speed 

  

I. Introduction 
 
The wide faced rolls used in high speed, sequential, paper and 

board manufacturing operations are investigated.  These 

elements are costly to produce and maintain owing to exacting 

specification requirements, surface finish quality and their 

dynamic characteristics, see for example, [1], [2]. 

Typically, machine speeds of up to 6,500 ft/min are 

encountered in these industries where continuous production 

schedules spanning two to three weeks are usually required.  

To accommodate the sheet specification tolerances imposed, 

roll cambering, so that upon sagging the roll, contact profile is 

free from deflection, is regularly achieved via contouring, 

during final roll turning, grinding and polishing operations. 

Without these fine limits manufacturing consistency, sheet 

thickness, strength and absorbency etc. would be 

compromised. Of equal importance, interruptions in 

production owing to uneven wear, differential loading and 

sheet tearing may be experienced resulting in expensive shut-

down, maintenance and refit costs. 

Costs, mass-inertia and dynamic deflection penalties are also 

instrumental in minimizing the tube wall thicknesses, of the 

many machine rolls used in these industries, at the design 

stage. Unfortunately, this also invites elastic deformation and 

dynamic deflection and both of these effects are constantly 

excited owing to internally generated noise, shock and 

vibration, as detailed in [3], [4]. 
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These variations are difficult to suppress in practice following 

initial design, installation and commissioning. However, the 

tendency towards wider machine construction elevated 

operating speeds and capital cost economies all promote and 

contribute to machine vibration, as in [5] and this remains as 

an endemic problem.  

In this regard, the effect of transverse vibrations when 

employing wide faced rolls is difficult to counter. Ultimately 

addressing this problem during the design process, see for 

example [6], is of fundamental importance. 

Otherwise, the manifestation of dynamic bowing, with the 

onset of whirling conditions, perpetrates breakdowns, 

production and consistency problems. This is an active 

operational condition which would not be detected via static 

inspections and from steady state measurements, as discussed 

in [7], [8]. 

 

II. Distributed-Lumped 
Parameter Roll Models 

 

The roll models considered herein, and in practice have the 

structure shown in figure 1. Essentially, the central roll body 

comprises a thin walled tube. Both the left and right ends of 

the roll consist of cast iron centres with sold steel shafts which 

are supported by bearings, as considered in [9]. 

In the analysis following, the bearing shafts and tube elements 

will be treated as relatively rigid elements with lumped inertia 

and stiffness properties. The cast iron centres at each end of 

the assembly will also be assumed to be relatively rigid discs 

so that dynamically the arrangement comprises a lumped, 

lumped, distributed, lumped, lumped configuration, for 

analysis purposes as in [10]. 

The flexible, distributed parameter shafts and tubes may be 

described in terms of the deflection y, slope θ, bending 

moment m and shear force q at their left and right ends 

respectively. The derivation of the matrix equation for a 

parallel, flexible, distributed parameter tube element is 

presented in [11].  

As a consequence for the left half tube, of length 1

2
l , external 

diameter
od , internal diameter

id the governing equation, is: 

   4 4 4 4 3 3 3 3( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
T T

y y y yY s s M s Q s s Y s s M s Q s  F  (1) 

where in (1); 
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and: 

   
 1 cosh cos 2f                          (2) 

 
2 sinh sinf                             (3) 

 
3 cosh cosf                            (4) 

and 

 
4 sinh sinf                            (5) 

where in equations (2) to (5): 

 1
2l                                            (6) 

l = length of the distributed parameter roll with: 

          
1 1 1

2 2 4s LC  ,                        (7) 

         1C
EI

                                         (8) 

 and: L A                                      (9) 

 

 

III. Fundamental Matrix 
Truncation 

 
From (2) to (5) it is clear that the truncated forms for f1, f2, f3 

and f4 are: 

 
4 8

1 1 ...
4! 8!

f
 

                                 (10) 

 
5 9

2 2 ...
5! 9!

f
 


 

    
 

                            (11) 

 
6 10

2

3 2 2 ...
6! 10!

f
 

                                (12) 

and 

 
3 7 11

4 2 ...
3! 7! 11!

f
   

    
 

                           (13) 

Substituting for f1, f2, f3 and f4 in (1) results in the elements of 

F(s) becoming: 
4 8

11 1( ) 1 ...
4! 8!

f s f
 
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4 8 12
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f s f l
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4 8

44 1( ) 1 ...
4! 8!

f s f
 

      

since: 

 
1 1 1

2 2 4l s LC l     

It is clear that every element 
, ( ) 1 , 4i jf s i j  is a rational 

function in s following the substitution for . However, this 

properly is maintained for all truncations, irrespective of the 

number of terms included in the series expansions of f1, f2, f3 

and f4. 

 

IV. Cast Iron, Steel Bearing Shaft 
and Tube Gyroscopic Model 

 
The input-output vectors from the distributed parameter tube 

model, given in section 2 become the input-output vectors for 

the lumped parameter models.  In this regard the model for a 

rigid rotor, with polar moment of inertia J and mass m, as 

shown in figure 1, would arise from the transformed 

relationship. 

 
3 2 3 2

3 2 2

2

3 2 2

( ) ( ), ( ) ( )

( ) ( ) ( )

( ) ( ) ( ),

y y

y y

Y s Y s s s

M s J s s M s

Q s ms Y s Q s

 



 

   

 

 

All of the relatively point-wise, rigid rotor equations are 

similar in that the deflections and slopes at the input and 

output ends are approximately equal. Also, the bending 

                   Proc. of the Intl. Conf. on Advances In Mechanical And Automation Engineering – MAE 2014.          
                                  Copyright © Institute of Research Engineers and Doctors. All rights reserved.                            

                              ISBN: 978-1-63248-022-4 doi: 10.15224/ 978-1-63248-022-4-52                                     

 



 

63 

 

moments and shear stress at the output ends are equal to those 

at the input end, minus the gyroscopic couple and plus the 

acceleration force, respectively. 

Hence: 

   

   

3 3 3 3 1 2 2 2 2

7 7 7 7 2 6 6 6 6

( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )

and

( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )

T T

y y y y

T T

y y y y

Y s s M s Q s s Y s s M s Q s

Y s s M s Q s s Y s s M s Q s

 

 





R

R

   (14) 

where in (14), since the roll is symmetrical about the vertical 

centre line: 

2

1 0 0 0

0 1 0 0
( ) ( ) ( )

0 1 0

0 0 1

c

c

s s s
J s

m s

 
 
   
  
 
 

1 2
R R R

 

Also, the steel bearing shafts are governed by: 

 
   

   

2 2 2 2 1 1 1 1 1

8 8 8 8 2 7 7 7 7

( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
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( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
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



B
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 (15) 

where again in (15), for symmetrical configurations: 

 

2
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( ) ( ) ( )

0 1 0
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s

s
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 
 
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Also, the gyroscopic couple experienced by the roll tube is 

given by the equation: 

   6 6 6 6 5 5 5 5( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
T T

y y y yY s s M s Q s s Y s s M s Q s G  (16) 

where in equation (16): 

 
1 0 0 0

0 1 0 0
( )

0 1 0

0 0 0 1

T

s
J s

 
 
 
  
 
 

G
 

This completes the lumped parameter element modelling. 

 

 
 

Figure 1, Roll General Arrangement 

 

 

 

 

 

V. Overall Roll Model 
 

A complete model for the overall roll can be easily assembled. 

If the equation for the left steel bearing shaft is: 

   2 2 2 2 1 1 1 1 1( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
T T

y y y yY s s M s Q s s Y s s M s Q s B
 
(17) 

the equation for the left, cast iron centre is: 

   3 3 3 3 1 2 2 2 2( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
T T

y y y yY s s M s Q s s Y s s M s Q s  R  (18) 

followed by the left half tube equation: 

   4 4 4 4 3 3 3 3( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
T T

y y y yY s s M s Q s s Y s s M s Q s  F   (19) 

and gyroscopic equation: 

   5 5 5 5 4 4 4 4( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
T T

y y y yY s s M s Q s s Y s s M s Q s G   (20) 

followed by the right half tube equation: 

   6 6 6 6 5 5 5 5( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
T T

y y y yY s s M s Q s s Y s s M s Q s  F
 
 (21) 

with the right, cast iron centre equation of: 

   7 7 7 7 2 6 6 6 6( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
T T

y y y yY s s M s Q s s Y s s M s Q s  R   (22) 

and finally the right, steel bearing shaft equation is: 

   8 8 8 8 2 7 7 7 7( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( )
T T

y y y yY s s M s Q s s Y s s M s Q s B   (23) 

completing the series component analysis. 

 

 

VI. High Machine Table 
RollsConclusion 

 
In this section the theoretical derivation given earlier will be 

applied to assess the whirling frequency of a high speed table 

roll. The parameters for this element, in accordance with 

Fig.1, are: 

  

3

3

2m (Roll face width) 6m

0.08m 0.2m, roll tube wall thickness = 5mm

Tube material density:  = 7800 kg/m

Steel bearing shafts density:  = 7800 kg/m , 0.3 m, = 0.02 m,

                         

t

o

t

s s s

l

D

l d





 

 



4 2                 0.18378 10 kgm , 0.73514 kg.s sJ m  

 

t
1For the steel tube: C    t t t

t t

L A
I E

    

In this case, from the dimensions given earlier, it is evident 

that the roll under consideration is symmetrical about the 

vertical centre line. Hence, as in Section 2: 
( ) ( ) ( ) and ( ) ( ) ( )s s s s s s   2 1 2 1B B B R R R  

Upon eliminating intermediate variables, from equations (17) 

to (23): 

   8 8 8 8 1 1 1 1( ), ( ), ( ), ( ) ( ) ( ), ( ), ( ), ( ) ,
T T

y y y yY s s M s Q s s Y s s M s Q s  H
  

(24) 

( ) ( ) ( ) ( )0 0 0 0 0
( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

s s s s
s

s s s ss s s s s

            
             
            

11 12 11 12

21 22 21 22

F F F FI I I I I
H

F F F FB I R I G I R I B I

 

where: 

                   Proc. of the Intl. Conf. on Advances In Mechanical And Automation Engineering – MAE 2014.          
                                  Copyright © Institute of Research Engineers and Doctors. All rights reserved.                            

                              ISBN: 978-1-63248-022-4 doi: 10.15224/ 978-1-63248-022-4-52                                     

 



 

64 

 

2 2

0 0
( ) ,  ( )  

0 0

0
and ( )

0 0

s c

s c

T

J s J s
s s

m s m s

J s
s

      
    
   

  
  
 

B R

G

  

where in equation (24) the partitions are in 2x2 block form 

and:  

        

       
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H

F F Z F F Z F G F F Z F F Z F GF F

 

where  ( ) ( )  s s   Z R B  

The boundary conditions, for the roll shown in figure 1, would 

require, for built-in ends, that: 

8 1
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( ) ( ) 0
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Y s Y s
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Consequently: 
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A solution to (25) is only possible if: 

1det  ( ) 0s 2H                           (26)  

If only the leading term of 1 2 3 4, ,  and f f f f is employed 

then: 
2 3
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 


 
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F

F F

F F

         (27) 

and from equation (14) for the cast iron centres and steel 

bearing shafts: 

 

  2

0
 

0

c s

c s

J J s

m m s

   
  

 
Z  

respectively. Upon substituting for ,   etc:11 12F F  

   1 1 12 2 22( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s s s s s s s   2 1 12 12 1H F F Z F F G F F   (28) 

and
1det ( )s
2

H may be evaluated from the algebraic 

expression for 0 s i   . Alternatively, the complex 

matrix for: 

1 ( ) ( ) ( )i i   
2

H X Y  

may be computed and 
1det ( )i
2

H may be obtained for each 

frequency. 

For the roll under consideration the Bode diagram for: 

11 det ( )i
2

H gives an indication of the resonant frequencies 

for constant diameter, variable roll face width:  

In this case, for the roll shown in figure 1, with an outside 

diameter of 0.2m and roll wall thickness of 5mm, the dynamic 

magnification at resonance with Ω = 2500 RPM is shown in 

figure 2, for 2m 6m.tl   

 
VII. Conclusion 

 
The analysis techniques introduced herein, propose new 

methods which incorporate both the distributed and flexural 

properties of machine rolls together with the rotational 

velocity effects. As a result of this modular analysis 

procedure, rolls and rotor systems for any distributed-lumped 

modelling composition can be easily constructed. 

Effectively, this allows the series assembly of rolls and rotors 

comprising elements of various diameters, tube wall 

thicknesses, lengths and materials. These may have significant 

elastic deformation and relatively rigid characteristics, 

reflecting thereby the actual properties of this form of roll-

rotor arrangement.  

The rolls which operate at the highest rotational velocity are 

located at the extreme ends of the operation, in paper 

manufacturing and conversion systems. In this regard, MG 

table and at the dry end of the process, winder rolls, are 

particularly vulnerable to dynamic deflection and bowing. The 

application study herein examines the critical speed problem 

for wide faced, MG Yankee machine, table rolls. Various face 

width and diameter units can be analyzed to provide 

comparisons.  

As the graphical results show, the dynamic amplification 

encountered changes owing to the stabilizing gyroscopic 

couple which the rolls experience at higher velocities. 

However, the problem of accelerating to the operational speed, 

or running at a speed in the vicinity of resonance, would cause 

roll bowing which would not be detectable from static 

measurements for example. In order to avoid these problems 

by design, accurate methods of assessment and critical speed 

analysis need to be employed. Equally, as with the technique 

outlined herein, details of the dynamic amplification condition 

near to resonance needs to be determined, before construction. 

 

 
Figure 2, Bode diagram for (

11 det ( )i
2

H ) with Ω=2500 RPM 

and 0.2m, 0.19m, 2m (Roll Face Width) 6mo i tD D l     
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