
65

On preprocessing large data sets by the use of triple

merge sort algorithm

 [Zbigniew Marszałek, Dawid Połap, Marcin Woźniak]

Abstract—This paper illustrates preprocessing large data sets

by the use of triple merge sort algorithm. Examined algorithm is

oriented on large data sets and as research results have shown the

version is about 15% faster than classic one. This feature may be

crucial for efficiency in NoSQL database systems or other

intelligent application operating on large data sets. In the paper is

presented and discussed examined version. There are presented

theoretical discussion and practical verification.

Keywords—computer algorithm, data mining, sorting

algorithm, analysis of computer algorithms

I. Introduction
Computer Science is one of most developing sciences in

recent years. This development is outcome of technology
improvements. Nowadays electronic devices are capable of
more new features and functions. We use electronics to help in
medicine, engineering, economics, transport and other.
Therefore database systems collect more and more
information. However these mean that computers must operate
on very large sets of information. Sorting algorithms are very
important when one need to work on big data sets. There are
known different versions, however many of them can be
improved for special purposes. Here, the authors would like to
present and discuss research results on organizing and sorting
strategies in NoSQL database systems and intelligent
applications using selected algorithm. Preprocessing large data
sets is examined using triple merge sort algorithm. Merge sort
algorithm uses structure of the stack. Such structure is set of
elements that are placed in order. Input data is divided into
stacks that are merged into one single sorted output. Sort by
merging can be done in many ways.

Zbigniew Marszałek

Institute of Mathematics, Silesian University of Technology
Gliwice, Poland

Dawid Połap

Institute of Mathematics, Silesian University of Technology

Gliwice, Poland

Marcin Woźniak

Institute of Mathematics, Silesian University of Technology

Gliwice, Poland

The authors of [1, 4, 9, 18] presented first versions of merge
sort algorithm. Some other versions are presented in [8, 14, 15,
20, 26, 27]. In [2, 7, 12, 22, 23] are examples of other special
algorithms for sorting large data sets. In [3, 5, 6, 8, 17, 24] is
presented parallel approach to programming selected methods.
In [5, 7, 10, 11, 16, 19, 21, 24, 28] are presented solutions to
improve sorting. In this paper we propose merge sort
algorithm dedicated for large data sets. Presented
modifications perform sorting without recursion, what
increases stability and reduces sorting time. Proposed
algorithm consists of two parts. The first procedure is merging
sorted items into stacks. The second procedure sorts stacks. In
classic version, presented in [1, 9, 20], are only merged two
stacks. This paper provides extended procedures dedicated for
large data sets. Extension of procedure is based on merging
multiple stacks, what can be very efficient in parallel systems.
The authors examined proposed extensions. Research results
show that multiple merge algorithm can be expanded to
increase stability and make it sort faster. This allows no
recursive optimization of sorting for large data sets.

II. Triple Merge Sort Algorithm
For Large Data Sets

Let us suppose we have very large input sequence. We can

sort it by dividing it into subsequences then merge sorted

substrings. Double merge procedure in first step begins with

comparison of pairs on the input. In this way we obtain two

component stacks. In second step, we obtain stacks containing

doubled number of elements. We merge until we have only

one stack. If the initial sequence contains odd number of items

we rewrite last element until last step in the algorithm. In the

last step we merge it and get completely sorted output.

Modified version of double merge dedicated for large data sets

was presented in [20]. Some other versions for large data sets

with important improvements in double merge sort algorithm

are shown in [14, 15, 20]. A number of modifications was

described in [26, 27, 28]. Authors of [6, 8, 24] showed

possibility of introducing multithreading. In papers [5, 10, 12]

is described possibility of adaptation to special initial

conditions. While in [13, 22, 23] are presented applications of

selected sorting methods in NoSQL database systems and

intelligent applications. The authors of present paper propose

non recursive version dedicated to large data sets. It is based

on extended structure of stack, what increases stability and

efficiency.

Let us now discuss possibility of merging three stacks. The

algorithm will merge three sequences X, Y and Z. While

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-78

66

sorting, we are having 2*3m-1 comparisons, where 3m is

number of elements in X, Y and Z. Merging is in some way

similar to classic version, however in the research we have

examined extended stacks. We used three instead of two.

While performing operations, algorithm compares three

stacks. First it compares every three elements. Than the

number of elements in compared stacks is tripled by merging.

This multiplication is preformed until all elements are merged

and sorted. If on input there are elements which have no filling

to triple stack structure, we rewrite them in similar way as in

[20]. Thus sorting procedure shall be more efficient and faster.

Sample sorting by triple merge is presented in figure 1.

Figure 1. Sample triple merge sorting

This method was described theoretically and results were
analyzed in practice. Tests were performed to examine the
method and compare it with other methods dedicated for large
data sets.

A. Time Complexity In Theory
Let us now discuss time complexity of the algorithm. This

factor describes how fast the algorithm may perform in
common use. Mainly we understand it as expected (average)
value, which with some changes (described by standard
deviation) shall be equal to computers with comparative
numerical capacities, please see [19] and [24]. Presented
algorithm of triple merge sorting has time complexity
described in the following theorem.

Theorem. Triple merge sort algorithm for large data sets

has time complexity nn 3log2  .

Proof. Starting triple merge sorting algorithm, we merge
three one element strings in three piece string. Such merging
for n-element sequence can be carried out using n comparisons
(for three elements one need to make three comparisons). In
next steps we merge three element strings into structured

sequence. This operation needs for n-element sequence no
more than 2n comparisons (to organize three m elements
sequences into structured sequence one need to make 2*3m-1
comparisons). Each time merging three sorted strings, we get
one structured sequence. Therefore to sort input n element
sequence we merge in k steps and each of them makes no
more than 2n comparisons. In conclusion, without loss of
generality, we can assume that sorted sequence has 3

k

elements. Thus, we estimate the following assumption

 nk

Nk



3min  

Logarithms both sides in (1) we have

 nk

Nk
33 log3logmin 


 

Thus, on basis of logarithmic function we obtain the following

 nk
Nk

33 log3logmin 


 

What means that (3) is equal to

 nk
Nk

3logmin 


 

Finally, we can assume that number of operations performed

by sorting will be

  nk 3log  

Therefore time complexity is

 nnknTavg 3log22   

Presented method was implemented. The implementation
was then examined in research. Algorithm was compiled as
CLR C++ in MS Visual Studio 2012 Ultimate. Tests were
carried out on quad core amd opteron processor 8356 8p.

In analysis of examined methods we are looking for
solutions of best time complexity and high stability. To
describe operations were measured characteristics of CPU
(Central Processing Unit) clock cycles and timing. CPU clock
cycle (CPU clock rate) is calculated as the rate in cycles per
second at which tested processor performs basic operations
like moving values between registers. On its basis, we can
estimate performance. Execution time is time in which CPU
executes procedures. However it can reflect not only execution
of the algorithm but also some other operations performed in
the system. These characteristics should be measured for
representative number of samples. The study of extended
methods was carried out for 100 test input files in each of
described classes. In the research have been tested random
arrangements, reversely sorted sequences and sequences in
correct order. In the analysis we used statistical methods as
arithmetic mean, standard deviation, mean deviation and

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-78

67

coefficient of variation. In [19] are described examples of
application of descriptive statistics to analyze procedures, for
more details please see also [2, 4, 9].

Arithmetic mean, also called expected value, for n values

from sample set of numbers naa ,,1  is based on formula


n

aa
a n


1  

We also estimated possible deviation from expected value.

Standard deviation is statistical measure, describing variability

of characteristic. This also helps to estimate stability and

performance. In statistics, there are several types of standard

deviation. In analysis of selected algorithms we used concept

of standard deviation for sample. This estimates standard

deviation of population using knowledge of some of its

objects. Standard deviation of random variable is in general

denoted by formula

 22))(()()))(((XEXEXEXE   

where E(X) represents expected value of random variable X. In

the research, results of each sampling are discrete variables.

Thus, standard deviation is calculated for discrete random

variables. A general formula for this type is

  







 

 

n

i
i

n

i
iii ppaa

1

2

1

  

where symbols mean that random variable X can have n values

naa ,,1  with corresponding probabilities npp ,,1  .

However to accurately describe the test one should determine

standard deviation of entire population, based no formula


n

paa
n

i

n

i
iii 

 











1

2

1
  

where symbols mean the same as in (9). In our research, (10)

is estimated by entire sample standard deviation in (11).

Approximation depends on information we have about

observation. Therefore in study of large data sets we used

formula


1

)(
1

2



 

 

n

aa
n

i
i

  

where symbols mean:

n – number of elements in the sample,

naa ,,1  - random variables in the sample,

a - arithmetic mean of the sample determined in (7).

Standard deviation estimator in (11) is unbiased variance

estimator with very slight error. Interpretation of standard

deviation is possible distance from the average. With increase

in standard deviation increases possibility of major differences

in performance compared to average. At the same time, the

smaller standard deviation, the greater certainty that results

will be close to average. An important aspect of the analysis is

to identify algorithms stability. Stability is best described by

coefficient of variation. Coefficient of variation is measure

that allows determining diversity in population. In the research

it is defined by formula


a

V


  

where the symbols mean:

 - standard deviation of random variables in the tests,

formula (11),

a - arithmetic mean of the sample, formula (7).

Based on its analysis, combined with analysis of standard

deviation, we estimated whether the algorithm is stable. The
higher are standard deviation and coefficient of variation the
greater is potential instability of the algorithm. Comparison of
these values will help to identify best of examined algorithms
with good stability which run in short time. In analyzes as
particular object we understand sample sort operation. We
examined random sets and as example plotted results for sets
of 100, 1 000, 10 000, 100 000, 1 000 000, 10 000 000 and
100 000 000 elements. In each of examined cardinalities,
sorting tests were performed for different layouts of elements
on input. Sorting tests were performed for randomly selected
100 sequences of each cardinality. Let us now present
examined algorithm of triple merge sort for large data sets.

B. Examined Algorithm
When one implements solution for large data sets it is

crucial to think of possible problems. Procedure must be ready
to operate on large data sets of any pose on the input. There
cannot be stack overflow as they are for other algorithms (see
[21] and [22]). Moreover as the input data is large, the method
shall use as little memory as possible. There is also need to
perform sorting fast enough for even simple computer systems
(see [13], [19] and [23]). All these aspects make it important
to verify solution in different tests and examinations. In
section III we present research results, which prove that
examined method is well organized and efficient for large data
sets. We have implemented proposed algorithm using
experience from other tests and research described in [13] and
[19]-[24]. Examined method performs sorting without
recursion, what increases stability and reduces sorting time.
Triple merge sort algorithm dedicated for large data sets
consists of two parts. The first procedure is merging, as
presented in figure 2. It is used to merge sorted items into
stacks. The second procedure sorts those stacks, as presented
in figure 3.

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-78

68

Figure 2. Algorithm to merge three sequence

Presented solution has similar composition to method
described in [20]. It was also used here, as the research have
shown validity of improvements in solution for large data sets,
for more detail see [19]-[23]. Examined methods are
composed of two algorithms. These algorithms operate on
input data to perform sorting. Algorithm presented in figure 3
is master one, which calls algorithm presented in figure 2 to
help organize processed information. Algorithm to merge
sequences makes the data in the stack to have appropriate
structure. This structure is then used for process of sorting. Let
us now present results of examinations.

III. Research results
Theoretical analysis of examined version shows that it

shall be similar in efficiency to method presented in [20]. To
verify this conclusion we have compared results of numerical
experiments. Described algorithm was examined for large data
sets. Algorithm was implemented using CLR C++ in MS
Visual Studio 2012 Ultimate on MS Windows server 2008 R2.
To test were taken random samples of 100 series in each class
of frequencies, including unfavorable positioning. Tests were
carried out on quad core amd opteron processor 8356 8p.

Figure 3. Algorithm to sort merged sequence

The aim of analysis and comparison is to verify if extended
triple merge is better to sort large data sets than classic
version. In examinations and tests were compared
characteristics presented in section II.

1) Double merge for large data sets
Let us first present research results for double merge sort,

for more details about this algorithm please see [20]. In table 1
are presented research results for CPU usage.

TABLE I. DOUBLE MERGE CPU USAGE

CPU [ti]

Number

of

elements

avg
standard

deviation
avg deviation

coefficient

of variation

100 2577,4 61,25 51,68 0,023

1000 3866,4 201,70 170,48 0,052

10000 21208,2 2494,63 2129,84 0,117

100000 140215,6 25280,54 19570,72 0,180

1000000 1356215,6 201155,10 175020,72 0,148

10000000 15937998 2369059,54 2064752,4 0,148

100000000 179688651,6 27556710,6 23970838,32 0,153

Research results on quad core amd opteron processor 8356 8p

Start

Load pointer to table a

Load size of the data into n

Construct table b size of n

Construct table p size of 4

Set Boolean variable b1 as true

For m=1, m<n, m*=3 do

 For i=0, i<n, i+=(3*m) do

 For k=0, k<4, k++ do

 Set index p[k] as i +m

 If index p[k] is greater n, then

 Set index p[k] as n

 End

 End

 If variable b1 is true, then

Proceed Algorithm to merge three

sequence from array a to array b setting

indexes as table p

 Else

Proceed Algorithm to merge three

sequence from array b to array a setting

indexes as table p

 End

 End

 Set b1 as negative b1

End

 If variable b1 is false, then

 Copy elements from array b to array a

Stop

Start

Load pointer to table a

Load pointer to table b

Load pointer to table p

Construct table q size of 3

For i=0, i<3, i++ do

Remember value q[i] in p[i]

End

Set Boolean variable bb as true

While variable bb is true, do

 Set Boolean variable as false

 For i=0, i<3, i++ do

 If index q[i] is less than p[i+1], then

 If variable bb is true, then

 If element a[q[i]] is less than z, then

 Remember value a[q[i]] in z

 Remember index i in t

 End

 Else

 Set Boolean variable bb as true

 Remember value a[q[i]] in z

 Remember index i in t

 End

 End

 If variable bb is true, then

 Remember value z in b[pb]

 Increase index pb by one

 Increase index q[i] by one

 End

End
Stop

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-78

69

Figure 4. Double merge CPU usage

In figure 4 is shown average CPU usage while sorting. In
table 2 are presented research results for sorting time.

TABLE II. DOUBLE MERGE SORTING TIME

Time [hh]

Number

of

elements

avg
standard

deviation

avg

deviation

coefficient

of

variation

100 0:0:0.00165 0:0:0.00003 0:0:0.0003 0,023

1000 0:0:0.00248 0:0:0.00012 0:0:0.0010 0,052

10000 0:0:0.01360 0:0:0.00160 0:0:0.0136 0,117

100000 0:0:0.08996 0:0:0.01622 0:0:0.1255 0,180

1000000 0:0:0.88657 0:0:0.53971 0:0:0.3199 0,173

10000000 0:0:10.2259 0:0:1.52000 0:0:1.2475 0,148

100000000 0:1:55.28923 0:0:17.6805 0:0:15.3798 0,153

Research results on quad core amd opteron processor 8356 8p

Figure 5. Double merge sorting time

In figure 5 is shown expected sorting time. However in the
research we try to examine different algorithms to find fastest
and most stable one in the sense described in section II. Let us

now discuss stability based on coefficient of variation
presented in section II.

Figure 6. Triple merge - coefficient of variation

Coefficient of variation is presented in figure 6. We can
see that for large data sets (above 1 000 000 elements on the
input) double merge sort method has CPU usage coefficient of
about 0.15. This means that usage of processor is stable and
the algorithm performance for large data sets is good. Similar
situation is for sorting time. In figure 6 it is marked with grey
color. Coefficient of variation for sorting time is similar to
CPU usage. However here we see more possible fluctuations.
This results will be compared with similar values describing
triple merge sort.

2) Triple merge for large data sets
Triple merge sort uses extended stacks. Elements are

merged in triple stacks to sort and further processing. In table
3 are presented research results for CPU usage.

TABLE III. TRIPLE MERGE CPU USAGE

CPU [ti]

Number

of

elements

avg
standard

deviation
avg deviation

coefficient

of

variation

100 2532 14,68 12 0,006

1000 3694,2 172,58 147,44 0,047

10000 18167,2 2337,31 2006,64 0,129

100000 134077,4 17648,22 14153,68 0,132

1000000 1164992,2 211194,94 182129,04 0,181

10000000 13366027 2434017,52 2101512,8 0,182

100000000 149713305,6 28582137,68 24764383,92 0,191

Research results on quad core amd opteron processor 8356 8p

Values of average CPU usage are shown in figure 7. The
chart of average CPU usage for triple merge sort is similar to
double merge sort in figure 4. Therefore both methods shall
have similar features, however in presented research most
important is efficiency and coefficient of variation to compare
them.

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-78

70

Figure 7. Triple merge CPU cycles

In table 4 are presented research results for sorting time.

TABLE IV. TRIPLE MERGE SORTING TIME

Time [hh]

Number

of

elements

avg
standard

deviation
avg deviation

coefficient

of

variation

100 0:0:0.00162 0:0:0.00001 0:0:0.00008 0,006

1000 0:0:0.00237 0:0:0.00011 0:0:0.0009 0,047

10000 0:0:0.01165 0:0:0.00149 0:0:0.0128 0,129

100000 0:0:0.08602 0:0:0.01132 0:0:0.0908 0,132

1000000 0:0:0.74300 0:0:0.13003 0:0:0.1149 0,175

10000000 0:0:8.57571 0:0:1.56167 0:0:1.4834 0,182

100000000 0:1:36.05688 0:0:18.33843 0:0:15.8896 0,191

Research results on quad core amd opteron processor 8356 8p

Figure 8. Triple merge sorting time

In figure 8 is shown expected sorting time. In this paper we
want to compare classic merge sort with extended version for
large data sets. Therefore in figure 9 we present chart of
coefficient of variation for triple merge sort.

Figure 9. Triple merge - coefficient of variation

Coefficient of variation for triple merge sort is presented in
figure 9. We can see that this method shall be more stable in
statistic sense, as chart of coefficient of variation has less
fluctuations. Both lines are almost flat for large data sets
(above 1 000 000 elements on input). CPU usage coefficient
of variation is lower than 0.2. This means that usage of
processor is stable and the algorithm performance for large
data sets is good. Coefficient of variation for sorting time is
similar to CPU usage. However here we see more possible
fluctuations. This results will be compared with similar values
describing double merge sort.

Once we have examined presented extended merge sorting
and classic method, we can compare them. The aim of analysis
and comparison is to verify if extended triple merge is better
to sort large data sets than classic version. We will try
compare efficiency for large data sets and coefficient of
variation.

IV. Analysis And Comparison
Analysis and comparison will describe efficiency for

sorting large data sets. We will compare CPU usage and
measured sorting time and coefficient of variations for both
examined methods. Let us first compare statistical stability. In
table 5 is presented CPU usage.

TABLE V. CPU USAGE COMPARISON

Coefficient of variation

Number of

elements
merge 2 merge 3

100 0,023 0,006

1000 0,052 0,047

10000 0,117 0,129

100000 0,180 0,132

1000000 0,148 0,181

10000000 0,148 0,182

100000000 0,153 0,191

Values calculated using formula (12)

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-78

71

Figure 10. Coefficient of variation cpu usage caomparison chart

Analyzing figure 10 we see that for large data sets (above
10 000 000 elements on input) double merge and triple merge
should have similar features. Let us now compare sorting time.

TABLE VI. SORTING TIME COMPARISON

Coefficient of variation

Number of

elements merge 2 merge 3

100 0,023 0,006

1000 0,052 0,047

10000 0,117 0,129

100000 0,180 0,132

1000000 0,173 0,175

10000000 0,148 0,182

100000000 0,153 0,191

Values calculated using formula (12)

Figure 11. Cofficient of variation comparison chart for time

Analyzing figure 11 we see that both algorithms are
similar in statistical stability for large data sets. Similar
conclusions come from analysis of figure 10. Therefore in
comparison most important will be efficiency in sorting large

data sets. In figure 12 and figure 13 we present comparison of
both examined methods for CPU usage and sorting time,
respectively. Triple merge sort is marked in grey while double
merge sort is marked in dark.

Figure 12. Comparison of cpu usage efficiency

Figure 13. Comparison of time efficiency

Analyzing figure 12 and figure 13 we see that for large
data sets (above 1 000 000 elements on input) triple merge sort
is more efficient. Efficiency of triple merge sort in comparison
to double merge sort is about 15% better. This means that
presented in section II algorithm is efficient for preprocessing
large data sets.

V. Conclusions
In the research we have compared double merge and triple

merge algorithms in versions dedicated for large data sets. As
the research have shown triple merge sort is about 15% more
efficient in preprocessing large data sets. Therefore extended
merge sort is better sorting method for large data sets. In the
future research some other extensions of merge sort will be
examined and compared.

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-78

72

References

[1] A. Aho, J. Hopcroft and J. Ullman, The design and analysis of computer

algorithms. Addison-Wesley Publishing Company, USA 1975.

[2] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J. Smith
and M. Zagha, “A comparison of sorting algorithms for the connection
machine CM-2”, [in:] Proceedings of the 3rd annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA91), Hilton Head, South
Carolina, July, 1991, pp. 3-16.

[3] R. Cole, “Parallel merge sort”, SIAM Journal Comput. No. 17, 1988, pp.
770-785.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to
algorithms. The MIT Press and McGraw-Hill Book Company,
Cambridge, 2001.

[5] P. Crescenzi, R. Grossi and G.F. Italiano, “Search data structures for
skewed strings. Experimental and Efficient Algorithms”, Second
International Workshop, WEA 2003, Ascona, Switzerland, May 26-28,
2003, No. 2647, Lecture Notes in Computer Science, Springer-Verlag,
New York-Berlin Heidelberg, USA-Germany , 2003, pp. 81-96.

[6] R. Dlekmann, J. Gehring, R. Luling, B. Monien, M. Nubel and R.
Wanka, “Sorting large data sets on a massively parallel system”, [in:]
Proceedings of the 6th Symposium on Parallel and Distributed
Processing, IEEE, Los Alamitos, CA, USA, Oct. 1994, pp. 2-9.

[7] G. Gedigaa and I. Duntschb, “Approximation quality for sorting rules”,
Computational Statistics and Data Analysis, No. 40, 2002, pp. 499-526.

[8] M.S. Jeon and D.S. Kim, “Parallel Merge Sort with Load Balancing”,
International Journal of Parallel Programming, No.1 Vol.31, February
2003, pp. 21-33.

[9] D.E. Knuth, Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, USA, second edition,
1998.

[10] A. LaMarca and R.E. Ladner, “The inuence of caches on the
performance of sorting”, [in:] Proceedings of the 8th Annual ACM-
SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, 5-7
January, 1997, pp. 370-379.

[11] A. LaMarca and R.E. Ladner, “The Inuence of Caches on the
Performance of Sorting”, [in:] Proceedings of Eighth Ann. ACM-SIAM
Symposium on Discrete Algorithms, 1997.

[12] P. Larson, “External Sorting: Run Formation Revisited”, IEEE
Transactions on Knowledge and Data Engineering, No.4 Vol.15, 2003,
pp. 961-972.

[13] Z. Marszałek and M. Woźniak, “On Possible Organizing Nosql Database
Systems”, International Journal of Information Science and Intelligent
System, the Martin Science Publishing LTD., Vol.2, No.2, USA, 2013,
pp. 51-59.

[14] V.S. Pai and P.J. Varman, “Prefetching with Multiple Disks for External
Mergesort:Simulation and Analysis”, [in:] Proceedings of Internetional
Conference no Data Engineering, 1992, pp. 273-282.

[15] B. Salzberg, “Merging Sorted Runs Using Large Main Memory”, Acta
Informatica, No.3 Vol.27, 1989, pp. 195-215.

[16] R. Sinha and J. Zobel, “Cache-conscious sorting of large sets of strings
with dynamic tries”, J. Exp. Algorithmics, No.9, 2004, pp. 1-5.

[17] R. Trimananda and C.Y. Haryanto, “A Parallel Implementation of
Hybridized Merge-Quicksort Algorithm on MPICH”, [in:] Proceedings
of 2010 International Conference on Distributed Framework for
Multimedia Applications (DFmA).

[18] M.A. Weiss, Data Structure & Algorithm Analysis in C++, 2nd ed.
Addison Wesley Longman, 1999.

[19] M. Woźniak and Z. Marszałek, Selected Algorithms for Sorting Large
Data Sets, Silesian University of Technology Press, Gliwice, Poland,
2013.

[20] M. Woźniak, Z. Marszałek, M. Gabryel and R.K. Nowicki, “Modified
Merge Sort Algorithm for Large Scale Data Sets”, ICAISC 2013,
Lecture Notes in Artifcial Intelligence, No. 7895, Part II, Springer-
Verlag, New York-Berlin Heidelberg, USA-Germany, 2013, pp. 612-
622.

[21] M. Woźniak, Z. Marszałek, M. Gabryel and R.K. Nowicki, “On quick
sort algorithm performance for large data sets”, Advances and
Innovations in Computer Science, Springer-Verlag, New York-Berlin
Heidelberg, USA-Germany, 2014, pp. (accepted-in press).

[22] M. Woźniak, Z. Marszałek, M. Gabryel and R.K. Nowicki, “On quick
sort algorithm performance for large data sets”, [in:] Proceedings of
International Conference on Knowledge, Information and Creativity
Support Systems, 7-9 November, Cracow, Poland, 2013, pp. 647-656.

[23] M. Woźniak, Z. Marszałek, M. Gabryel and R.K. Nowicki, “Triple heap
sort algorithm for large data sets”, [in:] Proceedings of International
Conference on Knowledge, Information and Creativity Support Systems,
7-9 November, Cracow, Poland, 2013, pp. 647-656.

[24] M. Woźniak and Z. Marszałek, Extended Algorithms for Sorting Large
Data Sets, Silesian University of Technology Press, Gliwice, Poland,
2014.

[25] M. Woźniak, W. M. Kempa, M. Gabryel, R. K. Nowicki and Z. Shao,
"On applying evolutionary computation methods to optimization of
vacation cycle costs in finite-buffer queue", ICAISC’2014, Lecture
Notes in Artificial Intelligence, Springer-Verlag, PART I, vol. 8467,
2014, pp. 480-491.

[26] W. Zhang and P.A. Larson, “Dynamic Memory Adjustment for External
Mergesort”, Proc. Very Large Data Bases Conf., 1997, pp. 376-385.

[27] L. Zheng and P.A. Larson, “Buffering and Read-Ahead Strategies for
External Merge-sort”, [in:] Proceedings of Very Large Data Bases
Conference, 1998, pp. 523-533.

[28] L. Zheng and P.A.Larson, “Speeding Up External Mergesort”, IEEE
Transactions on Knowledge and Data Engineering, Vol.8, No.2, 1996,
pp. 322-332.

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-78

