
5

Design of Partially Replicated Distributed Database

Systems with Combination of Total Cost and

Workload Balancing
 [Sukkyu Song]

Abstract—In partially replicated distributed database

systems, the minimization of total time usually attempts to

minimize resource consumption and therefore to maximize the

system throughput. On the other hand, the minimization of

response time may be obtained by having a large number of

parallel executions to different sites, requiring a higher resource

consumption, which means that the system throughput is

reduced. Workload balancing implies the reduction of the

average time that queries spend waiting for CPU and I/O service

at a network site, but its effect on the performance of partially

replicated distributed database systems cannot be isolated from

other distributed database design factors. In this research, the

total cost refers to the combination of total time and response

time. This paper presents a framework for total cost

minimization and workload balancing for partially replicated

distributed database systems considering important design

factors together. The framework incorporates both local

processing, including CPU and I/O, and communication costs. To

illustrate its suitability, experiments are conducted, and results

demonstrate that the proposed framework provides effective

partially replicated distributed database design.

Keywords— Partially replicated distributed database, Total

time, Response time, Workload, Operation (subquery) allocation,

Data allocation, Genetic algorithms

I. Introduction
This Two important aspects for design of partially

replicated distributed database systems are operation

allocation and data allocation. Operation allocation refers to
query execution plan indicating which operations (subqueries)
should be allocated to which sites in a computer network, so
that query processing costs are minimized. Data allocation is
to allocate relations to sites so that the performance of
distributed database are improved. In partially replicated
distributed database systems, the minimization of total time
usually attempts to minimize resource consumption and
therefore to maximize the system throughput. In other words,
if the usage of resources (CPUs, I/Os, and communication
channels) for a given transaction is minimized, more
transactions can be processed for a given time period, which in
turn means that the system throughput is increased. On the
other hand, a decrease in response time may be obtained by
having a large number of parallel executions to different sites,

Song, Sukkyu

Youngsan University

Busan, Korea

requiring a higher resource consumption, which means that the
system throughput is reduced (Johansson et al. 2003). In this
research, the total cost refers to the combination of total time
and response time. Workload balancing among network sites
is an important decision factor in designing partially replicated
distributed database systems. Workload balancing, in general,
refers to a query transaction scheduling scheme when used in
distributed systems. To execute a query, a query should be
routed (allocated) to a network site where the physical copy of
the relation referenced by the query is available. In workload
balancing, the objective of a query transaction scheduling
scheme is to balance the workloads among network sites as
opposed to total or response time minimization (Lin 2009).
The execution of a query requires a certain amount of services
from the system's resources such as CPU, I/O, and
communication channel. From the local site's point of view,
each site can be modeled as providing CPU and I/O services;
that is, the service at a site can be expressed in terms of the
CPU and I/O workloads. One of the implications of workload
balancing is that it can lead to significant reductions in the
average time that queries spend waiting for CPU and I/O
services, and as a result, the average query execution time is
significantly reduced; that is, the queuing delays at the
network site are minimized (March and Rho 1995; Kossmann
2000; Cheng et al. 2002; Menon 2005; Gu et al. 2006;
hababeh et al. 2007; Wangand Jea 2009).

The workload balancing problem is commonly studied
under the name of task allocation problem for general purpose
distributed computer systems (Verma and Tamhankar, 1997;
Jiang and Jiang, 2009). In the task allocation problem, it is
assumed that incoming tasks (such as queries) can be serviced
completely at any processing site. Workload balancing also
has been applied in distributed database systems for solving
the operation allocation problem. In a fully replicated
distributed database system, as in the general purpose
distributed computer system, arriving transactions can be
serviced at any sites. In a partially replicated distributed
database system, however, arriving transactions should be
routed (allocated) to the site owning the referenced relation for
processing. In other words, the data allocation scheme gives to
some extent limitations on decision choices in developing
workload balancing schemes. In a partially replicated
distributed database system, this means that data allocation
and workload balancing are not independent. We, therefore,
believe that in a partially replicated distributed database
system, as considered in this research, the workload balancing
issue should be taken into account in the early design step of
data allocation (Tamhankar and Ram, 1998). In this paper, we
propose a framework for total cost minimization and workload
balancing considering important design factors together. In

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

6

order to construct the framework for total cost minimization
and workload balancing, we consider total cost minimization
as the primary objective and workload balancing as the
secondary objective for partially replicated distributed
database design.

In this research, we propose genetic algorithms to explore
the interactions not only between total cost minimization
operation allocation and data allocation, but also between
workload balancing and data allocation. During the last-three
decades there has been a glowing interest in algorithms which
rely on analogies to natural processes. The emergence of
massively parallel computers made these algorithms of
practical interest. The best known algorithms in this class
include genetic algorithms, simulated annealing, classifier
systems, and neural networks (Michalewicz and Fogel, 2004).
Genetic algorithms are heuristic solutions that have been used
to solve intractable problems in distributed database systems
(Song and Gorla 2000; Cheng et al. 2002; Du et al. 2006;
Sevince and Cosar 2011). When compared to other heuristic
algorithms (Li and Jiang 2000) and enumerative techniques
(Song and Gorla 2000), genetic algorithms provide global
„optima‟ in much less time.

This paper is organized as follows. Section 2 defines the
cost models for total time, response time and workload. In
section 3, the framework for total cost minimization and
workload balancing is described in detail using the genetic
algorithm procedures, in which we explain how the
interactions are employed in this research. In section 4,
experiments and their results are presented. Section 5 provides
the conclusion for this research.

II. Development of Cost Models

A. Query Tree Model for Query
Execution Order
In this section, we introduce a query tree model

representing the query execution order. The first step of query
processing in a distributed context is to transform a high-level
global query into an efficient execution strategy (the ordering
of operations) on local databases. In other words, each query,
expressed in the SQL statement (or relational calculus) by
users against a database, can be decomposed into a sequence
of subqueries, which are equivalent to relational algebra
operations, each of which works on a relation stored at the
site. The set of execution order of subqueries and their
precedence relationships can then be represented as a query
tree. Each operation in the query tree is viewed as a separate
subquery with one or two input relations and an output
relation. An input relation is either a relation maintained by
the system or the output relation of another query. The output
of a subquery is an intermediate relation, which is stored at the
site it is referenced and deleted after the query is answered.
We assume that the relational algebra operations considered
are projection, selection and join. Other operations could be
included without altering any of the operation allocation
algorithm proposed in this research. Also note that we assume

that the structure of the query, i.e., the ordering of the
operations, is fixed prior to

f 4

F1 F2

F3

f 5

f 6 f 7

5

6

F1

F3

F2

1 2

4
3

f 8

Figure 1. Query Tree

operation allocation. Our assumption is consistent with those
of previous researchers in distributed databases design (Ozsu
and Valduriez 1991).

A query tree is illustrated in Fig. 1. A node is called a leaf
node (F1, F2 and F3) if it has no incoming arcs; that is, it
represents the relations in the database. A node is called an
operation node (nodes 1, 2, 3, 4 and 5) if it has incoming and
outgoing arcs. The operation nodes represent the relational
operations. The operation nodes such as 1, 2 and 3 represent
an unary operation such as selection, projection or a
combination of both, and the operation nodes such as 4 and 5
represent a binary operation such as join or union. Sometimes
a binary operation is performed on an input relation directly
without any unary operation(s), and in this case the unary
operation node connected to the corresponding input relation
is called a dummy operation node. An operation node without
any outgoing arcs is called a result node (node 6). An arc
represents the transmission of a (intermediate) relation into the
operations, such as f4, f5, f6, f7 and f8.

There is a site set associated with each node in the query
tree. The members of the site set for a leaf node are those sites
that hold a copy of that relation. The site set for an operation
node contains those sites that can perform the operation. In
general, selection and projection operations requiring relations
should be executed at only those sites that hold a copy of
relations referenced so that there is no transmission of a
relation required at the site of the operations, but join
operations can be executed at any site.

In the query tree, cost is associated with the operation
nodes representing local processing times, including estimated
CPU processing time and I/O time for its execution. There is
no local processing time associated with leaf nodes and
dummy operation nodes. The cost is associated with the arcs
representing estimated communication times, transmitting the
output relation of the source node from the site of source node

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

7

to the site of the receiving node. We assume that each site has
different I/O and CPU processing speeds (or costs) and
communication channel speeds (or costs) for different pairs of
sites are varied. Thus, both the local processing and
communication times depend on the sites selected for the
operation executions.

B. Total Time Model
The total time for each query is the sum of local processing

times and communication times for all subqueries. Total Time

=
(LP + COM)j

k
 j

k

j
, where j

k
LP represent the local

processing time of the subquery j (a node in the query tree) of

a query k. j
k

COM represents the communication time of
transmitting the input relation(s) to the site at which the
subquery j of a query k is being executed.

1. Local processing time (j
k

LP)

The local processing time of a subquery depends on an
operation type, the size of the input relation(s), the CPU speed
and the I/O speed of the site selected. We assume that CPU
processing is proportional to the amount of data accessed and
that I/O time is proportional to the number of blocks read or
written.

(A) For a selection or projection on a relation, the local
processing time for the subquery j of the query k is defined as:

j
k

LP =
Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k  )
 (1)

where

Bij

k

 is the number of blocks of relation i accessed by
subquery j of query k,

IO t is the I/O time of site t in msec for transferring 4k
byte page into main memory,

CPUt is the CPU time of site t in msec per 4k byte page
for selection and/or projection..

 (B) We also assume that the intermediate result of each
unary or join operation is transmitted directly to the next join
site and stored at the next join site before the execution of the
next join operation. As such, the local processing time for the
join j of the query k is defined as:

 j
k

LP =
Y IO Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

k + (2a)

Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k  )
 (2b)

where

m represents the selectivity of the two previous
operations (m = 1 or 2), where the selectivity is the ratio of
output relation size and input relation size, and

Bijp[m]

k

 is the size of an input (intermediate) relation where
p[m] represents two previous operations of the join operation
j (m is 1 for the left and 2 for the right operation).

Note that m can represent selection, projection or join
selectivity. (2a) represents the I/O time to store the
intermediate results of the previous operations to the site of the
current join operation. (2b) represents the I/O and CPU
processing times for the current join operation. Note that we

convert
Bijp[m]

k

 (the size of intermediate results being stored at

the join site) to
Bij

k

 (the size of same intermediate results
being retrieved for the current join operation) for notational

convenience so that
Bij

k

 will be used for the next join
operation with the join selectivity of the current join operation.

2. Communication time (j
k

COM)

When either of the relation(s) to be joined is not produced
at the site at which the join operation is performed,
communication for join operations is needed, and is expressed
as follows:

j
k

COM =
Y Y C (Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k )

where

C tp is the communication cost between site p and site t in
msec per 4k byte page.

Note that if a previous operation and the join operation are
executed at the same site (t=p), then Ctp =0. Communication
for sending the final result is also needed if the final operation
is not performed at the query originating site. Since there is
only one previous operation for the final operation, we assume

that
Zijp[2]

k

 for all i is 0 (also
Bijp[2]

k

 = 0). It should be noted
that we consider communication cost to include data
transmission cost. However, in real world, communication
cost may also include time to synchronize the two CPUs -- we
ignore this synchronization time, since this is usually a fixed
overhead cost and it is not variable like data transfer cost.

C. Response Time
In a partially replicated distributed database system, it is

possible to decompose a query into subqueries that can be
processed in parallel and also their intermediate relations can
be transmitted in parallel to the required site. Two types of
parallel execution are possible: (1) intra-operation parallelism,
and (2) inter-operation parallelism (Johansson et al. 2003). A

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

8

S1

S1 S1

S1

S2

S1

S2 S1

S1

S3 S2

Scenario - 1 Scenario - 2 Scenario - 3 Scenario - 4

typical example of intra-operation parallelism is pipelining of
a single join operation, by which two sites work in parallel;
that is, the site that request remote data will begin its join
processing as soon as the first tuple or packet of data has
arrived, whereas in sequential processing, the site receiving
data will not begin its join processing until all of the required
data has arrived. With inter-operation parallelism, several
subqueries in a single query can be executed in parallel. In
calculating response time, however, we limit the possible
parallelism to the only immediate child nodes of join operation
and not among the child nodes of different join operations.

Response time is calculated by taking into consideration
the possibility of performing local processing and data
transmission in parallel under the condition that the operations
are performed at different sites as mentioned in the previous
section. The response time of query k is:

Response time RT

k

j =
COM (p[1])j

k

 + LP

k

j (p[1]) +

RT

k

j (p[1])

where RT

k

j (p[1]) is the recursive function for the
response time.

The first term
COM (p[1])j

k

 is to calculate the
communication time sending the results to the query

originating site (ijp[2]
k

Z for all i is 0 and
Bijp[2]

k

 = 0) and the

LP

k

j (p[1]) refers to the local processing time of the final

operation. For the recursive function RT

k

j (p[1]) (but we will

use RT

k

j for convenience), we calculate the cost as follows.
Four scenarios exist depending upon sites at which the join
operation j and the two preceding operations p[1] and p[2] are
executed. Fig. 2 shows the four scenarios with three sites for
operation allocation; in each scenario, the bottom two sites
denote are used for preceding operations and the top site is
used for join operation.

Figure 2. Four Joining Scenarios

1. Scenario – 1:

The join operation j and the sites two preceding operators
p[1] and p[2] are executed at the same site; that is,

0 CYY tp

k

jp[2]t

k

jp[1]t 
,

0 CYY tp

k

jt

k

jp[1]t 

and
0 CYY tp

k

jp[2]t

k

jt 

then RT

k

j can be calculated by using the equation.

LP

k

j + m

k

j (p[m]LP
 +

(p[m])RTk

j)

Here, LP

k

j is the local processing time for sub query j,

(p[m])LPk

j is the local processing time for the preceding left
(m=1) or right (m=2) operation (i.e. subsub query). These
local processing times are calculated using the equations

introduced in the previous section.
(p[m])RTk

j is the
(response) time when a preceding operator is available for
local processing.

2. Scenario –2:

The join operation j and the two preceding operators p[1]
and p[2] are performed at three different sites. In this case the
three operators can be run in parallel. Then the response time
of the entire group is computed as the maximum of resource
consumption of individual operators and the usage of all the
shared resources (such as communication times) (Kossman,

2000). Then

k

jRT
is given by

Max {
,LPk

j (3a)

(p[1])LPk

j +
(p[1])RTk

j , (3b)

(p[2])LPk

j +
(p[2])RTk

j (3c)

COM (p[1])j

k

+
COM (p[2])j

k

} (3d)

where
COM (p[1])j

k

=
)BZ(CYY k

ijp[1]i

k

ijp[1]tp

k

jp

k

jp[1]t 

COM (p[2])j

k

 =
)BZ(CYY k

ijp[2]i

k

ijp[2]tp

k

jp

k

jp[2]t 

In the above, (3d) represents shared resource consumption,
which is the communication time. (3a) is the local processing
time for subquery j and (3b) and (3c) are the processing times
for the two preceding operations of subquery j. The
communication costs will be additive, since those are the
overheads on the receiving node, as represented by (3d).

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

9

3. Scenario –3:

The sites at which two preceding operations of subquery j
are performed are different and the join subquery j uses one of
these sites. There is no communication cost between one of
the preceding operators, say p[1], and the operator j. That is,

0 CYY tt

k

jt

k

jp[1]t 
,

0 CYY tp

k

jt

k

jp[2]p 

and
0 CYY tp

k

jp[2]p

k

jp[1]t 
, then

k

jRT
 is given by:

Max {

k

jLP
 +

(p[1])LPk

j +
(p[1])RTk

j , (4a)

(p[2])LPk

j +
(p[2])RTk

j , (4b)

COM (p[2])j

k

 } (4c)

where
COM (p[2])j

k

 =
)BZ(CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p 

In the above since sub query j and the left previous
operation p[1] are executed at the same site, the local
processing times of the two sites need to be added (4a). Since
right previous operation p[2] is executed at a different site, its
local processing time (included in (4b)) can be executed in
parallel. In addition, the communication time (4c) can be
implemented in parallel as well.

4. Scenario – 4:

In secenario-4, the two preceding operations of subquery j,
p[1] and p[2], are executed at the same site, while the
subquery j is executed at a different site. There is
communication time involved in shipping data from both the
preceding operations p[1] and p[2] to the site of subquery j.

That is,
0 CYY tp

k

jt

k

jp[1]p 
,

0 CYY tp

k

jt

k

jp[2]p 
and

0 CYY pp

k

jp[2]p

k

jp[1]p 
. Also, there will be no parallelism

between the operations p[1] and p[2]. Then

k

jRT
 is given by

Max {

k

jLP
, (5a)

(p[1])LPk

j +
(p[2])LPk

j +
(p[1])RTk

j +
(p[2])RTk

j ,(5b)

COM (p[2])j

k

+
COM (p[2])j

k

} (5c)

where
(p[1])COMk

j =
)BZ(CYY k

ijp[1]i

k

ijp[1]tp

k

jt

k

jp[1]p 

COM (p[2])j

k

 =
)BZ(CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p 

In the above, since subquery j is executed at a different site
than the preceding operators, its local processing of subquery j
(5a) can be done in parallel to the communication time (5c)
and the processing times of p[1] and p[2] . Since the preceding
operators are executed at the same site, their local processing
times are additive (4b). Also, the communication costs will be
additive, since those are the overheads on the receiving node.
Above equations hold whether previous operations are joins,
selections, or projections, or other relational algebra operators.

The stopping condition of the recursive function RT is as

follows. We define: if p[m] in ijp[m]
k

Z is equal to zero in the
response time recursive function, where zero for p[m] means
that the previous operation for this operation j (subquery) is
original relation. In scenarios 2 and 3, parallelism between the
preceding operations p[1] and p[2] is implied. It is assumed
there is no clash in data access between the two preceding

operations, i.e. i

k

ij

k

ij 0 (p[2]) Z* (p[1])Z 
, otherwise

local processing times can be additive in the worst case.

D. Update Tree Model for Update
Transaction
 An update transaction may be viewed as a two-part

action, wherein the first part corresponds to a query
transaction, followed by the second part which updates the
value of a set of relations, as shown in Figure 3. The
simplified SQL statement for the update query tree (Fig. 3)
may be as follows:

 UPDATE F3, F4 Alias F

 SET F.z = F.z * 1.1

 WHERE F.k IN (SELECT k

 FROM F1, F2

 WHERE F1.x = F2.y)

3

1 2

f 3

f 5

f 4

F1 F2

4

F2F1

F3 F4
Update

Query

Part

Part

L1 L2

Figure 3. Query Tree for Update Transaction

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

10

In the second part of an update transaction, the update
values (L1 and L2, which are the same as the intermediate
relation f5 resulting from the final operation 3 in Figure 3)
resulting from the first part must be sent from the update
initiation site (site for operation 4 in Figure 3) to all sites that
have a copy of the relation being updated, and then the relation
must be updated at each site (for example, two copies of F3
and three copies of F4 in Figure 3), which incurs CPU and I/O
costs at each site. In Figure 3, two relations 1 and 2 are
referenced by the query part of update transaction, and then
both relations are updated according to the update value
resulting from the query part.

E. Cost Models for Update Trasaction
As mentioned in the previous section, the total cost for

executing all query (either OLTP or decision-support) and
update transactions against a particular data allocation scheme
will determine the goodness of its data allocation scheme, and
it is represented as follows:

 Total Cost =

F(k, t)Q(k, t) + F(u, t)U(u, t)
tk tu 

Where F(k,t) and F(u,t) are the frequencies of query k
originating at site t and update u originating at site t per unit
time, and Q(k,t) and U(u,t) are the cost of query k and update
u transactions originating at site t. Our objective is to
minimize this total cost.

We now define the update transaction cost model. Before
describing the cost model, we first introduce one more

variable iU , specifying relations updated by the update

transaction. iU is 1 if relation i is updated by the update
transaction; otherwise, it is 0. The update transaction cost is
defined as follows:

 U(u,t) = Q(u,t) +

C U X Ltp i it iipt 
 + (1)

(IO U X B + CPU U X B)t i it i

u

tit i it i

u

i  + (2)

IO U X Ltt i it ii  (3)

where

Bi

u

 is the number of blocks of relation i updated by update u,

Li is the update value in number of blocks for the relation i,
which is the same as the final result from the query part Q(u,t),

IO t is the I/O cost coefficient (speed) of site t in msec per
page (4k bytes),

CPUt is the CPU cost coefficient (processing speed) of
site t in msec per page (4k bytes),

C tp is the communication cost coefficient (channel speed)
between site t and site p in msec per page (4k bytes),

Xit represents data allocation; relation i is stored at site t.

Note that calculation of query execution time for the query
part Q(u,t) of the update transaction is exactly the same as that
of the total time model (see below for details). The reason for
using the total time model for Q(u,t) is that the update
transactions typically occur in the DEBIT/CREDIT type of
transactions in the banking industry, which in general require
high throughput. Therefore, the calculation of Q(u,t) is the
same as Q(k,t) of total time introduced in Chapter V. In the
formula, (1) represents the communication cost for sending the
update values (Li) from the update initiation site to all sites
that have the copy of the relation being updated; (2) represents
I/O cost for reading the required relation into main memory
and CPU cost for processing the update; and (3) represents the
update cost for writing the updated values back to disk.

Calculation of Q(u,t)

 Q(u,t) =
(LP + COM)j

k
 j

k

j
 (1)

 j
k

LP =
Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k  )
 (2)

 j
k

LP =
Y IO Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

k + (3a)

Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k  )
 (3b)

j
k

COM =
Y Y C (Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k )
 (4)

where

j
k

LP represents the local processing time of the subquery j
of a query k.

j
k

COM represents the communication time of transmitting
the input relation(s) to the site at which the subquery j of a
query k is being executed.

Bij

k

 is the number of blocks of relation i accessed by
subquery j of query k.

Bijp[m]

k

 is the size of an input (intermediate) relation where
p[m] represents two previous operations of the join operation
j: m is 1 for the left previous operation, and 2 for the right
previous operation.

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

11

m represents selectivity of the two previous operation (m
= 1 or 2), and selectivity refers to the ratio of relation size
reduction after an operation.

jt
k

Y represents operation allocation and is 1 if subquery j
of query k is done at site t; otherwise, it is 0.

jp[m]t
k

Y is 1 if the left (m = 1) or right (m = 2) previous
operation for join operation j of query k is done at site t;
otherwise, it is 0.

 ij
k

Z is 1 if input (or intermediate) relation(s) i is referenced
by subquery j of query k.

ijp[m]
k

Z is 1 if input (intermediate) relation i is referenced
by the left (m = 1) or right (m = 2) previous operation for join
operation j of query k; otherwise, it is 0.

(1) represents the total query execution time for the query
part Q(u,t) of the update transaction and is the sum of all local
processing times and communication times. (2) represents the
local processing time for the subquery j of the query k when
the subqueries are unary operations such as the selection or
projection operation. (3a) represents the I/O time in storing the
intermediate results of previous operations to the site of the
current join operation before the execution of the join. (3b)
represents the I/O and CPU processing times for the current
join operation. (4) represents the communication time for join
operations when either of the (intermediate) relation(s) to be
joined is not produced at the site at which the join operation is
performed. (4) is also used for the communication time for
sending the final result if the final operation is not performed
at the query originating site. Since there is only one previous

operation for the final operation, we assume that
Zijp[2]

k

 for all

i is 0 (also
Bijp[2]

k

 = 0).

F. Workload Model
We define the unbalanced factor (UBF) as the sum of the

absolute deviation of site workloads from the average network
workload. The objective function for workload balancing is
then defined to minimize UBF. Minimization of UBF gives a
workload distribution that has approximately balanced the
network workload. Note that if the network workload among
sites is balanced totally (all site have the same workload), the
absolute deviation becomes zero. The objective function is
defined as follows.

Minimize UBF =
LI - LI + LC - LCt avt t avt 

subject to

LI =

1

N
 LIav tt

LC =

1

N
 LCav tt

where LI t and LC t represent the I/O and CPU workloads

(I/O and CPU times), respectively, at the site t; LIav and

LCav represent the average I/O and CPU workloads (I/O and
CPU times), respectively, in the entire database; N represents

the number of sites. We now define LI t and LC t as follows:

(1) For a selection or projection,

 LI t =
F(k, t) Y IO Z Bjt

k

jk t ij

k

i ij

k 

 LC t =
F(k, t) Y CPU Z Bjt

k

jk t ij

k

i ij

k 

(2) For a join,

LI t =
F(k, t) Y IO Z B

k jt

k

j t im m ijp[m]

k

ijp[m]

k   
 +

F(k, t) Y IO Z Bjt

k

jk t ij

k

i ij

k 

 LC t =
F(k, t) Y CPU Z Bjt

k

jk t ij

k

i ij

k 

where

F(k, t) represents the frequency of query k originating at
site t,

jt
k

Y represents operation allocation, and is 1 if subquery j
of query k is done at site t, otherwise it is 0,

ij
k

Z is 1 if input (or intermediate) relation(s) i is referenced
by subquery j of query k,

ijp[m]
k

Z is 1 if input (intermediate) relation i is referenced
by the left (m = 1) or right (m = 2) previous operation for join
operation j of query k, otherwise it is 0,

IO t is the I/O cost coefficient (speed) of site t in msec per
page (4k bytes),

CPUt is the CPU cost coefficient (processing speed) of
site t in msec per page (4k bytes),

Bij

k

 is the number of blocks of relation i accessed by
subquery j of query k,

Bijp[m]

k

 is the size of an input (intermediate) relation where
p[m] represents two previous operations of the join operation
j: m is 1 for the left previous operation, and 2 for the right
previous operation, and

m represents the selectivity of the two previous operation

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

12

 (m = 1 or 2), and the selectivity refers to the ratio of
relation size reduction.

(3) For the update part of an update transaction,

 LI t =
F(u, t) IO U X B t i itiu i +

F(u, t) IO U X L t i itiu i

 LC t =
F(u, t) CPU U X B t i itiu i

where

F(u, t) represents the frequency of update originating at
site t,

Xit represents data allocation; relation i is stored at site t,

Bi

u

 is the number of blocks of relation i updated by update
u, and

Li is the update value in number of blocks for the relation
i, which is the same as the final result from the query part of
an update transaction.

Note that the query part of an update transaction is the
same as (1) and (2) above.

III. Framework for Total Cost
Minimization and Workload

Balancing

As described in the previous section, workload balancing
can be used as the sole objective for the operation allocation as
opposed to total cost minimization, and in our case, the total
cost is the combination of total time and response time. Our
purpose, however, is to use workload balancing as the
secondary objective for the data allocation while keeping total
cost minimization as the primary objective. In order to
accomplish this objective, we employ four algorithms: one for
the operation allocation whose objective is minimizing the
total cost, one for workload balancing whose work workload
depends on the optimized operation allocation resulted from
the operation allocation algorithm, and two for the data
allocation. The framework is proposed that these four
algorithms interact with each other as shown in Fig. 4.

In order to obtain better data allocation in terms of total
cost as well as workload balancing, each step in the
framework is adopted to use the genetic algorithm. four
genetic algorithms interact with each other according to the
following steps:

(1) GA I produces the initial data allocation population
by using binary strings. Note that the fitness of GA I is the
total cost.

(2) GA II also produces the initial data allocation
population, but by using a different random number seed (for
example, 0.5) from the one (for example, 0.1) used for GA I.
Note that the fitness of GA II is UBF.

(3) For each chromosome (data allocation scheme) from
GA I, find the best operation allocation for each query (or
query part of an update) by using GA III. In this step we
obtain the fitness for each data allocation scheme in terms of
the total cost.

(4) For each chromosome (data allocation scheme) from
GA II, find the best operation allocation for each query (or
query part of an update) by using GA IV. In GA IV, the best
operation allocation for each query is obtained in terms of the
total cost like GA III. But, once the best operation allocation
for each query has been obtained, UBF is calculated for each
data allocation scheme (chromosome of GA II) based on the
best operation allocation obtained. So in this step we obtain
the fitness for each data allocation scheme in terms of UBF
based on the best operation allocation.

(5) Once all fitnesses (total costs) for GA I and (UBFs)
GA II have been determined, the migration of selected
chromosomes between GA I and GA II takes place. The
number of chromosomes to be migrated is selected according
to the random number which is always less than one-half of
the total number of population, and these chromosomes are
then selected based on their fitness (from the best one) in the
current population of GA I and GA II respectively. Then the
best chromosomes selected from GA I are migrated into the
population of GA II, and at the same time the same number of
the worst fitness chromosomes in GA II are removed from the
population in GA II. The same migration procedure occurs
from GA II to GA I. The forced migration occurs at each
generation during one-half of the total number of generations,
and at the generation when the best fitness is not changed for
three consecutive generations during subsequent generations.

Data Allocation
Total Cost Minimization

Operation Allocation for

Operation Allocation for

Load balancing

Migration

(GA I)
(GA III)

(GA IV)

Data Allocation

(GA II)

Total cost

UBF

Figure 4: Framework for Total Cost Minimization and
Workload Balancing with Four Genetic Algorithms

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

13

The reason to make the forced migration occur at the
higher frequency during early generation and slow subsequent
generation is that during early generation, there are not many
differences between GA I and GA II in terms of total cost and
UBF; but during later generation, since chromosomes in GA I
and GA II are already optimized in terms of total cost and
UBF, respectively, the migrated chromosomes do not make
any significant contribution. The migration employed in this
research, therefore, allows GA I to create as many diverse
chromosomes as possible during early generations. This
migration can be compared to the concepts of migration
demonstrated by Potts et al. (1994).

(6) Steps 3, 4, and 5 are repeated until the GAs I and II
have reached the maximum number of generations.

IV. Experiments and Results

In this section, we investigate how not only the data
allocation pattern but also the unbalanced factor is changed
when a different objective function is used. We also
investigate the effect of migration between two genetic
algorithms. We will discuss this effect in terms of the total
cost as well as the unbalanced factor.

Finally, we compare two data allocation genetic
algorithms, one using only interaction between total cost
minimization operation allocation and data allocation (referred
to as GA I/III) and one using only interaction between
workload balancing operation allocation and data allocation
(referred to as GA II/IV), using thee different objective
functions: total time, response time, and the combination of
both.

For all experiments, we assume that the communication
speed between any two pairs of sites is identical, which is set
at 2.0. The processing speeds of all sites are also assumed to
be identical, and are set I/O and CPU at 0.1 and 1.2,
respectively. The configuration of the distributed database is
assumed to consist of five sites and seven relations.

A. Effect of Objective Function
The research questions investigated are as follows, and

they are reiterated in terms of the unbalanced factor:

(1) for the total time minimization problem, the
execution time can be minimized when queries are executed
by using the smallest set of sites, which in turn means data
themselves should be allocated to as few sites as possible.

(2) response time minimization can be obtained by
having a large number of parallel local processing and
transmissions at different sites as much as possible, which in
turn means data should be allocated to as many sites as
possible.

(3) When the two objectives above are combined, data
allocation should find a compromise suitable for total time
minimization and response time minimization.

The above statements imply that the unbalanced factor for
the data allocation scheme resulting from total time
minimization should be larger than that of the data allocation
scheme from response time minimization. And the unbalanced
factor for the data allocation scheme resulting from
minimization of a combination of total time and response time
should be between those from total time minimization and
response time minimization.

 In order to investigate the effect of objective functions in
terms of the unbalanced factor, the query and update
originating site and their frequency are set as shown in Table
1. And Table 2 shows solution patterns for all three
minimization problems converge around the 20th generation.
The results at the 20th generation are shown as follows: As
expected, in the case of total time minimization, four relations
are allocated to site 3 while two relations are allocated to sites
1 and 2, which in turn means that UBF is high. In case of
response time minimization, one or two

 Table 1: Site and Frequency for Transactions

Transaction q

1

q

2

q

3

q

4

Q

11

Q

12

Q

13

u1 u2 u3 u4

Site 5 3 2 1 4 1 2 1 5 3 4

Frequency 5
0

5
0

5
0

5
0

2 2 2 10 10 10 10

Table 2: Solution Patterns

 Notation: T (total time minimization)

 R (response time minimization)

 C (combination of both)

 + U (with update transactions)

Note: Column: Sites; Row: Relations

Total Time Minimization:

Time = 223727, UBF = 170779.6

Response Time Minimization:

Time = 207027, UBF = 83285.8

T + U R + U C + U

10000 01000 10000

00001 00010 00001

00110 10000 00100

01000 10000 10000

11100 00100 00100

00100 00001 01001

00100 00100 00001

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

14

Combination: Time = 216242.5, UBF = 133183.6

relations are dispersed among five sites, so UBF (83285.8)
is much less than that of total time minimization (170779.6).
In case of the combination of total time and response time
minimization, the UBF is in between those of total time and
response time minimization. This results show that the genetic
algorithm finds solutions in a reasonable way according to its
objective function.

B. Effect of Migration
The effect of the forced migration is investigated in this

section. We first run the data allocation genetic algorithm
without workload balancing, naming it OADA (Operation
Allocation with Data Allocation). Then the genetic algorithms
explained in this paper are run using the same query and
update transactions, named LBDA (WorkLoad Balancing with
Data Allocation including cost minimization operation
allocation), for convenience.

As in the previous experiment, the genetic algorithms
converge around the 20th generation. So all results are
obtained at the 20th generation, and the number of
chromosomes (the population size) is 20. First, in the case of
total time minimization, Fig. 5 plotted against 20
chromosomes shows that the UBFs of LBDA are much less
than those of OADA, while the best total time of OADA is
223727 (UBF = 170779) and that of LBDA is 223137 (UBF =
52583). This result shows that LBDA not only gives better
total time but also much better UBF. Since OADA attempts
only to minimize the total time, as a result the total time is
minimized but UBF actually may be increased, as explained in
the previous section. LBDA, however, not only attempts to
minimize the total time but also UBF, and since the migration
leads to more diverse chromosomes, LBDA results in better
total time and UBF. This result shows the superiority of
LBDA over OADA.

Second, in the case of response time minimization, there is
not much difference between OADA and LBDA in terms of
response time and UBF. As we described in the previous
section, the response time minimization naturally disperses
data among sites, and as a result, UBF is also minimized.
These results are illustrated in Fig. 6.

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25

Chromosome Number

UBF

OADA

LBDA

Figure 5: UBF by Total Time Minimization

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30

Chromosome Number

UBF

OADA

LBDA

Figure 6: UBF by Response Time Minimization

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25

Chromosome Number

UBF

OADA

LBDA

Figure 7: UBF by Minimization of Combination of Both

Third, in the case of minimization of the combination of
total time and response time, the difference of UBF between
OADA and LBDA is not as much as those resulted from total
time minimization. But the total cost of LBDA is 238835,
which is better than that of OADA, which is 239757. Fig. 7
shows the slightly improved UBF of LBDA over OADA when
we visually inspect the patterns between two results, although

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

15

we do not prove that statistically. In summary, the above
results show LBDA is superior to OADA.

C. Comparison between Three Genetic
Algorithms
In this section we compare three genetic algorithms,

OADA, LBDA, and one more genetic algorithm employing
GA II and IV in Figure 4; that is, its objective is to minimize
UBF, and we name it as UBFDA. The comparison is made in
terms of total time, response time, and the combination of
both. Three genetic algorithms start with the same initial
populations. Since the objective of OADA is to minimize total
cost, a combination of total time and response time, whereas
that of UBFDA is to minimize the unbalanced factor, even
though three genetic algorithms start with the same initial
populations, the final results will be different in terms of total
time, response time, and the combination of both respectively.
One more issue we are investigating in this experiment is the
implication of workload balancing; that is, workload balancing
can lead to significant reduction in the average query response
time since the waiting time for CPU and I/O services at sites
of queries is reduced when queries are executed at the
dynamic (run-time) environment. But since we employ only a
static (compile-time) workload balancing in this research, it is
hard to see the effect of actual response time (run-time)
reduction of queries due to workload balancing unless we
actually run simulation models (Carey and Lu 1986) or use
mathematical queuing models based on data allocations and
operation allocations (or workload balanced operation
allocation) resulting from two genetic algorithms. Applying
simulation or queuing models is, however, out of scope of this
research. We, therefore, merely compare two genetic
algorithms in terms of how total time, response time, and the
combination of both are changed.

Table 3 shows the results based on two genetic algorithms,
OADA and UBFDA. In case of total time minimization, the
total time of UBFDA (19,195) is increased as compared to that
of OADA (15,595) even though UBF of UBFDA is
significantly reduced. The main reason is that since UBFDA
tends to spreads the workloads among sites, the total time is
increased due to increased communications (note that the total
time is minimized when subqueries are executed at the same
site as much as possible).

In case of response time minimization, the response times
are almost the same according to two genetic algorithms,
whereas UBF of UBFDA is reduced as compared to OADA
(7,694 -> 3,353). The reason is that response time
minimization naturally spreads the workloads among sites in
order to maximize the parallel executions of subqueries so that
there is not much difference of response time itself between
two genetic algorithms. In case of the combination of both,
there is not much difference between OADA and UBFDA, but
the interaction between the total time and response time
minimizations leads to a little bit more reduction of total cost
as compared to the reduction of response time.

The execution results of total time, response time, and
combination of both up to the 20th generations are shown in
Fig. 8, 9, and 10, respectively. All three genetic algorithms are

Table 3: Comparison between Two Genetic Algorithms

Objective
Genetic

Algorithm
Time UBF

Total Time

UBF

OADA 15,595 11,967

UBFDA 19,159 2,200

Response Time

UBF

OADA 16,848 7,694

UBFDA 16,914 3,953

Combination

UBF

OADA 35,437 38,098

UBFDA 36,179 3,121

14000

16000

18000

20000

0 5 10 15 20 25

Generation

T
o
ta

l
T
im

e

UBFDA

OADA

LBDA

Figure 8: Comparison of Three Genetic Algorithms

(Total Time Minimization)

16000

16200

16400

16600

16800

17000

17200

0 5 10 15 20 25

Generation

R
e
sp

o
n
se

 T
im

e

UBFDA

OADA

LBDA

Figure 9: Comparison of Three Genetic Algorithms

(Response Time Minimization)

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

16

31000

33000

35000

37000

39000

0 10 20 30

Generation

C
o
m

b
in

a
ti
o
n

UBFD

A

OADA

LBDA

Figure 10: Comparison of Three Genetic Algorithms

(Minimization of Combination of Both)

stopped at the 20th generation since the solutions are all
conversed around the 20th generation. All time cost for two
genetic algorithms, OADA and LBDA, continue to decrease as
the number of generation is increased, but those of UBFDA
are not since its objective is not cost (time) minimization. One
notable thing in case of total time minimization is that the total
time tends to be increased as the number of generations is
increased.

This result indicates that the total time minimization and
workload balancing have a counter effect on each other. For
all three cases, the results also show that LBDA always finds
better solutions compared to OADA.

V. Conclusion

This paper proposes the framework for total cost
minimization and workload balancing. It is more realistic to
solve the integrated problem of both data and operation
problem based on total cost minimization and workload
balancing than solve each problem separately. To our best
knowledge, this paper is the first attempt to consider total cost
minimization and workload balancing in determination of data
allocation and operation allocation. Computational results
show the effectiveness of the framework. The proposed
framework is more likely to provide a better data allocation
and operation allocation for the performance of partially
replicated distributed database systems.

References

[1] C. Cheng, W. Lee, and K. Wong, “Genetic algorithm-based clustering

approach for database partitioning,” IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 32(3), pp. 215–230, March 2002.

[2] J. Du, R. Alhajj, and K. Barker, “Genetic algorithms based approach to
database vertical partitioning,” Journal of Intelligent Information
Systems, Vol. 26(2), pp. 167–183. Feb 2006.

[3] X. Gu, W. Lin, and V. Bharadwaj, “Practically realizable
efficient data allocation and replication strategies for distributed
databases with buffer constraints,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 17 Issue 9, pp. 1001-
1013, Sep 2006.

[4] I. Hababeh, R. Omar, and B. Nicholas, “A high-performance
computing method for data allocation in distributed database

systems,” Journal of Supercomputing, Vol. 39 Issue 1, pp. 3-18,
Jan 2007.

[5] Y. Jiang and J. Jiang, “Contextual resource negotiation-based
task allocation and load balancing in complex software
systems,” IEEE Transactions on Parallel & Distributed
Systems., Vol. 20 Issue 5, pp. 641-653, May 2009.

[6] J. Johansson, S. March, and J. Naumann, “Modeling network latency
and parallel processing in distributed database design,” Decision
Sciences, Vol. 34(4), pp. 677–706, April 2003

[7] D. Kossmann, “The state of the art in distributed query processing,”
ACM Computing Surveys,” Vol. 32(4), pp. 422–469, April 2000.

[8] M. Lin, “An optimal workload-based allocation approach for multidisk
databases,” Data & Knowledge Engineering, Vol. 68 Issue 5, pp. 499-
508, May 2009.

[9] S. March and S. Rho, “Allocating data and operations to nodes in
distributed database design,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 7(2), pp. 305–317, Feb 1995

[10] S. Menon, “Allocating fragments in distributed databases,” IEEE
Transactions on Parallel & Distributed Systems, Vol. 16(7), pp. 577–
585, July 2005

[11] Z. Michalewicz and D. Fogel, How to Solve It: Modern Heuristics, 2nd
edition, Springer, Berlin, 2004.

[12] M. Ozsu and P. Valduriez, Principles of Distributed Database Systems.
Englewood Cliffs, N. J., Prentice-Hall Inc., 1991.

[13] J. Potts, T. Giddens, and S. Yadav. “The development and evaluation of
an improved genetic algorithm based on migration and artificial
selection.” IEEE Transactions on Systems, Man, and Cybernetics, Vol.
24, pp. 73-86, January 1994.

[14] E. Sevince and A. Cosar, “An evolutionary genetic algorithm for
optimization of distributed database queries,” The Computer Journal,
Vol. 54 Issue 5, pp. 717–725, 2011.

[15] S. Song and N. Gorla, “Genetic algorithm for vertical fragmentation and
access path selection,” The Computer Journal, Vol. 43 Issue 1, pp. 81–
93, 2000.

[16] A.Tamhankar and S. Ram, “Database fragmentation and allocation: an
integrated methodology and case study,” IEEE Transactions on Systems,
Man, and Cybernetics: Part A., Vol. 28 Issue 3, pp. 288-295, May 1998.

[17] A. Verma and M. Tamhankar, “Reliability-based optimal task-allocation
in distributed-database management systems,” IEEE Transactions on
Reliability, Vol. 46 Issue 4, pp. 452-459, Dec 1997.

[18] J. Wang and K. Jea, “A near-optimal database allocation and replication
strategies for distributed databases with buffer constraints,” Information
Sciences, Vol. 179 Issue 21, pp. 3772-3790, Oct 2009.

[19] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.
(references)

[20] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol.
2. Oxford: Clarendon, 1892, pp.68–73.

[21] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[22] K. Elissa, “Title of paper if known,” unpublished.

[23] R. Nicole, “Title of paper with only first word capitalized,” J. Name
Stand. Abbrev., in press.

[24] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy
studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th
Annual Conf. Magnetics Japan, p. 301, 1982].

[25] M. Young, The Technical Writer's Handbook. Mill Valley, CA:
University Science, 1989.

Proc. of the Intl. Conf. on Advances In Information Processing And Communication Technology - IPCT 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-021-7 doi: 10.15224/ 978-1-63248-021-7-68

javascript:__doLinkPostBack('','ss~~AR%20%22Xin%20Gu%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Wujuan%20Lin%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Veeravalli%2C%20Bharadwaj%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22IEEE%20Transactions%20on%20Parallel%20%26%20Distributed%20Systems%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22IEEE%20Transactions%20on%20Parallel%20%26%20Distributed%20Systems%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','ss~~AR%20%22Hababeh%2C%20Ismail%20Omar%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Bowring%2C%20Nicholas%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22Journal%20of%20Supercomputing%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22IEEE%20Transactions%20on%20Parallel%20%26%20Distributed%20Systems%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22IEEE%20Transactions%20on%20Parallel%20%26%20Distributed%20Systems%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','ss~~AR%20%22Lin%2C%20Ming-Hua%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22Data%20%26%20Knowledge%20Engineering%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','ss~~AR%20%22Tamhankar%2C%20Ajit%20M.%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Ram%2C%20Sudha%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22IEEE%20Transactions%20on%20Systems%2C%20Man%20%26%20Cybernetics%3A%20Part%20A%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22IEEE%20Transactions%20on%20Systems%2C%20Man%20%26%20Cybernetics%3A%20Part%20A%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','ss~~AR%20%22Verma%2C%20Ajit%20Kumar%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Tamhankar%2C%20Mangesh%20Trimbak%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22IEEE%20Transactions%20on%20Reliability%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22IEEE%20Transactions%20on%20Reliability%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','ss~~AR%20%22Wang%2C%20Jen-Ya%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Jea%2C%20Kuen-Fang%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22Information%20Sciences%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22Information%20Sciences%22%7C%7Csl~~jh','');

