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Abstract—In partially replicated distributed database 

systems, the minimization of total time usually attempts to 

minimize resource consumption and therefore to maximize the 

system throughput. On the other hand, the minimization of 

response time may be obtained by having a large number of 

parallel executions to different sites, requiring a higher resource 

consumption, which means that the system throughput is 

reduced. Workload balancing implies the reduction of the 

average time that queries spend waiting for CPU and I/O service 

at a network site, but its effect on the performance of partially 

replicated distributed database systems cannot be isolated from 

other distributed database design factors. In this research, the 

total cost refers to the combination of total time and response 

time. This paper presents a framework for total cost 

minimization and workload balancing for partially replicated 

distributed database systems considering important design 

factors together. The framework incorporates both local 

processing, including CPU and I/O, and communication costs. To 

illustrate its suitability, experiments are conducted, and results 

demonstrate that the proposed framework provides effective 

partially replicated distributed database design. 

Keywords— Partially replicated distributed database, Total 

time, Response time, Workload, Operation (subquery) allocation, 

Data allocation, Genetic algorithms 

I. Introduction 
This Two important aspects for design of partially 

replicated distributed database systems are operation 

allocation and data allocation. Operation allocation refers to 
query execution plan indicating which operations (subqueries) 
should be allocated to which sites in a computer network, so 
that query processing costs are minimized. Data allocation is 
to allocate  relations to  sites  so  that  the  performance  of  
distributed  database  are  improved. In partially replicated 
distributed database systems, the minimization of total time 
usually attempts to minimize resource consumption and 
therefore to maximize the system throughput. In other words, 
if the usage of resources (CPUs, I/Os, and communication 
channels) for a given transaction is minimized, more 
transactions can be processed for a given time period, which in 
turn means that the system throughput is increased. On the 
other hand, a decrease in response time may be obtained by 
having a large number of parallel executions to different sites,  
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requiring a higher resource consumption, which means that the 
system throughput is reduced (Johansson et al. 2003). In this 
research, the total cost refers to the combination of total time 
and response time. Workload balancing among network sites 
is an important decision factor in designing partially replicated 
distributed database systems. Workload balancing, in general, 
refers to a query transaction scheduling scheme when used in 
distributed systems. To execute a query, a query should be 
routed (allocated) to a network site where the physical copy of 
the relation referenced by the query is available. In workload 
balancing, the objective of a query transaction scheduling 
scheme is to balance the workloads among network sites as 
opposed to total or response time minimization (Lin 2009). 
The execution of a query requires a certain amount of services 
from the system's resources such as CPU, I/O, and 
communication channel. From the local site's point of view, 
each site can be modeled as providing CPU and I/O services; 
that is, the service at a site can be expressed in terms of the 
CPU and I/O workloads. One of the implications of workload 
balancing is that it can lead to significant reductions in the 
average time that queries spend waiting for CPU and I/O 
services, and as a result, the average query execution time is 
significantly reduced; that is, the queuing delays at the 
network site are minimized (March and Rho 1995; Kossmann 
2000; Cheng et al. 2002; Menon 2005; Gu et al. 2006; 
hababeh et al. 2007; Wangand Jea 2009). 

The workload balancing problem is commonly studied 
under the name of task allocation problem for general purpose 
distributed computer systems (Verma and Tamhankar, 1997; 
Jiang and Jiang, 2009). In the task allocation problem, it is 
assumed that incoming tasks (such as queries) can be serviced 
completely at any processing site. Workload balancing also 
has been applied in distributed database systems for solving 
the operation allocation problem. In a fully replicated 
distributed database system, as in the general purpose 
distributed computer system, arriving transactions can be 
serviced at any sites. In a partially replicated distributed 
database system, however, arriving transactions should be 
routed (allocated) to the site owning the referenced relation for 
processing. In other words, the data allocation scheme gives to 
some extent limitations on decision choices in developing 
workload balancing schemes. In a partially replicated 
distributed database system, this means that data allocation 
and workload balancing are not independent. We, therefore, 
believe that in a partially replicated distributed database 
system, as considered in this research, the workload balancing 
issue should be taken into account in the early design step of 
data allocation (Tamhankar and Ram, 1998). In this paper, we 
propose a framework for total cost minimization and workload 
balancing considering important design factors together. In 
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order to construct the framework for total cost minimization 
and workload balancing, we consider total cost minimization 
as the primary objective and workload balancing as the 
secondary objective for partially replicated distributed 
database design.  

In this research, we propose genetic algorithms to explore 
the interactions not only between total cost minimization 
operation allocation and data allocation, but also between 
workload balancing and data allocation. During the last-three 
decades there has been a glowing interest in algorithms which 
rely on analogies to natural processes. The emergence of 
massively parallel computers made these algorithms of 
practical interest. The best known algorithms in this class 
include genetic algorithms, simulated annealing, classifier 
systems, and neural networks (Michalewicz and Fogel, 2004). 
Genetic algorithms are heuristic solutions that have been used 
to solve intractable problems in distributed database systems 
(Song and Gorla 2000; Cheng et al. 2002; Du et al. 2006; 
Sevince and Cosar 2011). When compared to other heuristic 
algorithms (Li and Jiang 2000) and enumerative techniques 
(Song and Gorla 2000), genetic algorithms provide global 
„optima‟ in much less time. 

This paper is organized as follows. Section 2 defines the 
cost models for total time, response time and workload. In 
section 3, the framework for total cost minimization and 
workload balancing is described in detail using the genetic 
algorithm procedures, in which we explain how the 
interactions are employed in this research. In section 4, 
experiments and their results are presented. Section 5 provides 
the conclusion for this research. 

 

II. Development of Cost Models 

A. Query Tree Model for Query 
Execution Order  
In this section, we introduce a query tree model 

representing the query execution order. The first step of query 
processing in a distributed context is to transform a high-level 
global query into an efficient execution strategy (the ordering 
of operations) on  local databases. In other words, each query, 
expressed in the SQL statement (or relational calculus) by 
users against a database, can be decomposed into a sequence 
of subqueries, which are equivalent to relational algebra 
operations, each of which works on a relation stored at the 
site. The set of execution order of subqueries and their 
precedence relationships can then be represented as a query 
tree. Each operation in the query tree is viewed as a separate 
subquery with one or two input relations and an output 
relation. An input relation is either a relation maintained by 
the system or the output relation of another query. The output 
of a subquery is an intermediate relation, which is stored at the 
site it is referenced and deleted after the query is answered. 
We assume that the relational algebra operations considered 
are projection, selection and join. Other operations could be 
included without altering any of the operation allocation 
algorithm proposed in this research. Also note that we assume 

that the structure of the query, i.e., the ordering of the 
operations, is fixed prior to  
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Figure 1. Query Tree 

 

operation allocation. Our assumption is consistent with those 
of previous researchers in distributed databases design (Ozsu 
and Valduriez 1991).  

A query tree is illustrated in Fig. 1. A node is called a leaf 
node (F1, F2 and F3) if it has no incoming arcs; that is, it 
represents the relations in the database. A node is called an 
operation node (nodes 1, 2, 3, 4 and 5) if it has incoming and 
outgoing arcs. The operation nodes represent the relational 
operations. The operation nodes such as 1, 2 and 3 represent 
an unary operation such as selection, projection or a 
combination of both, and the operation nodes such as 4 and 5 
represent a binary operation such as join or union. Sometimes 
a binary operation is performed on an input relation directly 
without any unary operation(s), and in this case the unary 
operation node connected to the corresponding input relation 
is called a dummy operation node. An operation node without 
any outgoing arcs is called a result node (node 6). An arc 
represents the transmission of a (intermediate) relation into the 
operations, such as f4, f5, f6, f7 and f8.  

There is a site set associated with each node in the query 
tree. The members of the site set for a leaf node are those sites 
that hold a copy of that relation. The site set for an operation 
node contains those sites that can perform the operation. In 
general, selection and projection operations requiring relations 
should be executed at only those sites that hold a copy of 
relations referenced so that there is no transmission of a 
relation required at the site of the operations, but join 
operations can be executed at any site. 

In the query tree, cost is associated with the operation 
nodes representing local processing times, including estimated 
CPU processing time and I/O time for its execution. There is 
no local processing time associated with leaf nodes and 
dummy operation nodes. The cost is associated with the arcs 
representing estimated communication times, transmitting the 
output relation of the source node from the site of source node 
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to the site of the receiving node. We assume that each site has 
different I/O and CPU processing speeds (or costs) and 
communication channel speeds (or costs) for  different pairs of 
sites are varied. Thus, both the local processing and 
communication times depend on the sites selected for the 
operation executions.  

B. Total Time Model  
The total time for each query is the sum of local processing 

times and communication times for all subqueries.  Total Time 

= 
(LP +  COM )j

k
 j

k

j
, where j

k
LP  represent the local 

processing time of the subquery j (a node in the query tree) of 

a query k. j
k

COM  represents the communication time of 
transmitting the input relation(s) to the site at which the 
subquery j of a query k is being executed. 

 

1. Local processing time ( j
k

LP )  

The local processing time of a subquery depends on an 
operation type, the size of the input relation(s), the CPU speed 
and the I/O speed of the site selected. We assume that CPU 
processing is proportional to the amount of data accessed and 
that I/O time is proportional to the number of blocks read or 
written.  

(A) For a selection or projection on a relation, the local 
processing time for the subquery j of the query k is defined as:    

j
k

LP  = 
Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k   )
    (1) 

where   

Bij

k

 is the number of blocks of relation i accessed by 
subquery j of query k, 

IO t  is the I/O time of site t in msec for transferring 4k 
byte page into main memory, 

CPUt  is the CPU time of site t in msec per 4k byte page 
for selection and/or projection.. 

 

 (B) We also assume that the intermediate result of each 
unary or join operation is transmitted directly to the next join 
site and stored at the next join site before the execution of the 
next join operation. As such, the local processing time for the 
join j of the query k is defined as: 

   j
k

LP  =  
Y  IO   Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

k  +    (2a) 

                

Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k   )
       (2b)        

 

where   

m  represents the selectivity of the two previous 
operations (m = 1 or 2), where the  selectivity is the ratio of 
output relation size and input relation size, and 

Bijp[m]

k

 is the size of an input (intermediate) relation where 
p[m] represents two previous operations of  the join operation 
j (m is 1 for the left and 2 for the right operation). 

          

Note that m  can represent selection, projection or join 
selectivity. (2a) represents the I/O time to store the 
intermediate results of the previous operations to the site of the 
current join operation. (2b) represents the I/O and CPU 
processing times for the current join operation. Note that we 

convert 
Bijp[m]

k

 (the size of intermediate results being stored at 

the join site) to 
Bij

k

 (the size of same intermediate results 
being retrieved for the current join operation) for notational 

convenience so that 
Bij

k

 will be used for the next join 
operation with the join selectivity of the current join operation. 

 

2. Communication time ( j
k

COM ) 

When either of the relation(s) to be joined is not produced 
at the site at which the join operation is performed, 
communication for join operations is needed, and is expressed 
as follows: 

j
k

COM  = 
Y  Y  C   ( Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k  )
 

where  

C tp  is the communication cost between site p and site t in 
msec per 4k byte page. 

   

Note that if a previous operation and the join operation are 
executed at the same site (t=p), then Ctp =0. Communication 
for sending the final result is also needed if the final operation 
is not performed at the query originating site. Since there is 
only one previous operation for the final operation, we assume 

that 
Zijp[2]

k

 for all i is 0 (also 
Bijp[2]

k

 = 0). It should be noted 
that we consider communication cost to include data 
transmission cost. However, in real world, communication 
cost may also include time to synchronize the two CPUs -- we 
ignore this synchronization time, since this is usually a fixed 
overhead cost and it is not variable like data transfer cost. 

C. Response Time  
In a partially replicated distributed database system, it is 

possible to decompose a query into subqueries that can be 
processed in parallel and also their intermediate relations can 
be transmitted in parallel to the required site. Two types of 
parallel execution are possible: (1) intra-operation parallelism, 
and (2) inter-operation parallelism (Johansson et al. 2003). A 
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typical example of intra-operation parallelism is pipelining of 
a single join operation, by which two sites work in parallel; 
that is, the site that request remote data will begin its join 
processing as soon as the first tuple or packet of data has 
arrived, whereas in sequential processing, the site receiving 
data will not begin its join processing until all of the required 
data has arrived. With inter-operation parallelism, several 
subqueries in a single query can be executed in parallel. In 
calculating response time, however, we limit the possible 
parallelism to the only immediate child nodes of join operation 
and not among the child nodes of different join operations.   

Response time is calculated by taking into consideration 
the possibility of performing local processing and data 
transmission in parallel under the condition that the operations 
are performed at different sites as mentioned in the previous 
section. The response time of query k is: 

Response time  RT

k

j   =  
COM (p[1])j

k

 + LP

k

j (p[1]) + 

RT

k

j (p[1])             

where  RT

k

j (p[1]) is the recursive function for the 
response time.  

 

The first term 
COM (p[1])j

k

 is to calculate the 
communication time sending the results to the query 

originating site ( ijp[2]
k

Z  for all i is 0 and 
Bijp[2]

k

 = 0) and the 

LP

k

j (p[1]) refers to the local processing time of the final 

operation. For the recursive function RT

k

j (p[1]) (but we will 

use RT

k

j for convenience), we calculate the cost as follows. 
Four scenarios exist depending upon sites at which the join 
operation j and the two preceding operations p[1] and p[2] are 
executed. Fig. 2 shows the four scenarios with three sites for 
operation allocation; in each scenario, the bottom two sites 
denote are used for preceding operations and the top site is 
used for join operation. 

 

Figure 2.  Four Joining Scenarios 

 

 

1. Scenario – 1: 

The join operation j and the sites two preceding operators 
p[1] and p[2] are executed at the same site; that is,       

 
0 CYY tp

k

jp[2]t

k

jp[1]t 
, 

0 CYY tp

k

jt

k

jp[1]t 
 

and 
0 CYY tp

k

jp[2]t

k

jt 
  

then RT

k

j  can be calculated by using the equation.  

LP

k

j  + m

k

j  (p[m]LP
 +  

(p[m])RTk

j ) 

  

Here, LP

k

j is the local processing time for sub query j, 

(p[m])LPk

j is the local processing time for the preceding left 
(m=1) or right (m=2) operation (i.e. subsub query). These 
local processing times are calculated using the equations 

introduced in the previous section. 
(p[m])RTk

j is the 
(response) time when a preceding operator is available for 
local processing. 

 

2. Scenario –2: 

The join operation j and the two preceding operators p[1] 
and p[2] are performed at three different sites. In this case the 
three operators can be run in parallel. Then the response time 
of the entire group is computed as the maximum of resource 
consumption of individual operators and the usage of all the 
shared resources (such as communication times) (Kossman, 

2000). Then 

k

jRT
is given by 

Max {  
,LPk

j      (3a) 

(p[1])LPk

j + 
(p[1])RTk

j ,   (3b) 

(p[2])LPk

j + 
(p[2])RTk

j    (3c) 

COM (p[1])j

k

+  
COM (p[2])j

k

}  (3d) 

where  
COM (p[1])j

k

=
)BZ( CYY k

ijp[1]i

k

ijp[1]tp

k

jp

k

jp[1]t 
 

      
COM (p[2])j

k

 = 
)BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jp

k

jp[2]t 
 

In the above, (3d) represents shared resource consumption, 
which is the communication time. (3a) is the local processing 
time for subquery j and (3b) and (3c) are the processing times 
for the two preceding operations of subquery j. The 
communication costs will be additive, since those are the 
overheads on the receiving node, as represented by (3d). 
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3. Scenario –3: 

The sites at which two preceding operations of subquery j 
are performed are different and the join subquery j uses one of 
these sites. There is no communication cost between one of 
the preceding operators, say p[1], and the operator j. That is,  

0 CYY tt

k

jt

k

jp[1]t 
, 

0 CYY tp

k

jt

k

jp[2]p 
 

and 
0 CYY tp

k

jp[2]p

k

jp[1]t 
, then 

k

jRT
 is given by: 

 

Max  {

k

jLP
 + 

(p[1])LPk

j +
(p[1])RTk

j , (4a) 

        
(p[2])LPk

j + 
(p[2])RTk

j ,    (4b) 

COM (p[2])j

k

 }                  (4c) 
  

where 
COM (p[2])j

k

 = 
)BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p 
 

In the above since sub query j and the left previous 
operation p[1] are executed at the same site, the local 
processing times of the two sites need to be added (4a). Since 
right previous operation p[2] is executed at a different site, its 
local processing time (included in (4b)) can be executed in 
parallel. In addition, the communication time (4c) can be 
implemented in parallel as well. 

 

4. Scenario – 4:    

In secenario-4, the two preceding operations of subquery j, 
p[1] and p[2], are executed at the same site, while the  
subquery j is executed at a different site. There is 
communication time involved in shipping data from both the 
preceding operations p[1] and p[2] to the site of subquery j. 

That is, 
0 CYY tp

k

jt

k

jp[1]p 
, 

0 CYY tp

k

jt

k

jp[2]p 
and 

0 CYY pp

k

jp[2]p

k

jp[1]p 
. Also, there will be no parallelism 

between the operations p[1] and p[2]. Then 

k

jRT
 is given by 

Max  {

k

jLP
,                 (5a) 

(p[1])LPk

j + 
(p[2])LPk

j + 
(p[1])RTk

j + 
(p[2])RTk

j ,(5b) 

COM (p[2])j

k

+ 
COM (p[2])j

k

}                (5c)
   

where  
(p[1])COMk

j  = 
)BZ( CYY k

ijp[1]i

k

ijp[1]tp

k

jt

k

jp[1]p 
 

COM (p[2])j

k

 = 
)BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p 
 

In the above, since subquery j is executed at a different site 
than the preceding operators, its local processing of subquery j 
(5a) can be done in parallel to the communication time (5c) 
and the processing times of p[1] and p[2] . Since the preceding 
operators are executed at the same site, their local processing 
times are additive (4b). Also, the communication costs will be 
additive, since those are the overheads on the receiving node. 
Above equations hold whether previous operations are joins, 
selections, or projections, or other relational algebra operators.  

The stopping condition of the recursive function RT is as 

follows. We define: if p[m] in ijp[m]
k

Z  is equal to zero in the 
response time recursive function, where zero for p[m] means 
that the previous operation for this operation j (subquery) is 
original relation. In scenarios 2 and 3, parallelism between the 
preceding operations p[1] and p[2] is implied. It is assumed 
there is no clash in data access between the two preceding 

operations, i.e. i

k

ij

k

ij   0  (p[2]) Z* (p[1])Z 
, otherwise 

local processing times can be additive in the worst case. 

 

D. Update Tree Model for Update 
Transaction 
  An update transaction may be viewed as a two-part 

action, wherein the first part corresponds to a query 
transaction, followed by the second part which updates the 
value of a set of relations, as shown in Figure 3. The 
simplified SQL statement for the update query tree (Fig. 3) 
may be as follows: 

 

 UPDATE F3, F4 Alias F 

 SET          F.z = F.z * 1.1 

 WHERE  F.k IN (SELECT   k 

                                  FROM     F1, F2 

                                       WHERE  F1.x = F2.y) 

 

3

1 2

f 3

f 5
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Figure 3.  Query Tree for Update Transaction 
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In the second part of an update transaction, the update 
values (L1 and L2, which are the same as the intermediate 
relation f5 resulting from the final operation 3 in Figure 3) 
resulting from the first part must be sent from the update 
initiation site (site for operation 4 in Figure 3) to all sites that 
have a copy of the relation being updated, and then the relation 
must be updated at each site (for example, two copies of F3 
and three copies of F4 in Figure 3), which incurs CPU and I/O 
costs at each site. In Figure 3, two relations 1 and 2 are 
referenced by the query part of update transaction, and then 
both relations are updated according to the update value 
resulting from the query part.  

 

E. Cost Models for Update Trasaction  
As mentioned in the previous section, the total cost for 

executing all query (either OLTP or decision-support) and 
update transactions against a particular data allocation scheme 
will determine the goodness of its data allocation scheme, and 
it is represented as follows: 

 

   Total Cost = 

F(k, t)Q(k, t) +  F(u, t)U(u, t)
tk tu   

 

Where F(k,t) and F(u,t) are the frequencies of query k 
originating at site t and update u originating at site t per unit 
time, and Q(k,t) and U(u,t) are the cost of query k and update 
u transactions originating at site t. Our objective is to 
minimize this total cost. 

We now define the update transaction cost model. Before 
describing the cost model, we first introduce one more 

variable iU , specifying relations updated by the update 

transaction. iU  is 1 if relation i is updated by the update 
transaction; otherwise, it is 0. The update transaction cost is 
defined as follows: 

 

   U(u,t) = Q(u,t) +   

C U X Ltp i it iipt 
 +                                           (1) 

                 

(IO  U X B  +  CPU  U X B )t i it i

u

tit i it i

u

i   +   (2) 

 
IO  U X Ltt i it ii                                       (3) 

where 

Bi

u

 is the number of blocks of relation i updated by update u, 

Li  is the update value in number of blocks for the relation i, 
which is the same as the final result from the query part Q(u,t), 

IO t  is the I/O cost coefficient (speed) of site t in msec per 
page (4k bytes), 

CPUt  is the CPU cost coefficient (processing speed) of 
site t in msec per page (4k bytes), 

C tp  is the communication cost coefficient (channel speed) 
between site t and site p in  msec per page (4k bytes), 

Xit  represents data allocation; relation i is stored at site t. 

 

Note that calculation of query execution time for the query 
part Q(u,t) of the update transaction is exactly the same as that 
of the total time model (see below for details). The reason for 
using the total time model for Q(u,t) is that the update 
transactions typically occur in the DEBIT/CREDIT type of 
transactions in the banking industry, which in general require 
high throughput. Therefore, the calculation of Q(u,t) is the 
same as Q(k,t) of total time introduced in Chapter V. In the 
formula, (1) represents the communication cost for sending the 
update values (Li) from the update initiation site to all sites 
that have the copy of the relation being updated; (2) represents 
I/O cost for reading the required relation into main memory 
and CPU cost for processing the update; and (3) represents the 
update cost for writing the updated values back to disk. 

 

Calculation of Q(u,t)   

 Q(u,t) = 
(LP +  COM )j

k
 j

k

j
                                    (1) 

 j
k

LP  = 
Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k   )
 (2) 

 j
k

LP  = 
Y  IO   Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

k  +             (3a) 

Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k   )
  (3b) 

j
k

COM  = 
Y  Y  C   ( Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k  )
        (4) 

where  

j
k

LP  represents the local processing time of the subquery j 
of a query k. 

j
k

COM  represents the communication time of transmitting 
the input relation(s) to the site at which the subquery j of a 
query k is being executed. 

Bij

k

  is the number of blocks of relation i accessed by 
subquery j of query k. 

Bijp[m]

k

 is the size of an input (intermediate) relation where 
p[m] represents two previous operations of the join operation 
j: m is 1 for the left previous operation, and 2 for the right 
previous operation. 
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m  represents selectivity of the two previous operation (m 
= 1 or 2), and selectivity refers to the ratio of relation size 
reduction after an operation. 

jt
k

Y  represents operation allocation and is 1 if subquery j 
of query k is done at site t; otherwise, it is 0.  

jp[m]t
k

Y  is 1 if the left (m = 1) or right (m = 2) previous 
operation for join operation j of query k is done at site t; 
otherwise, it is 0. 

 ij
k

Z  is 1 if input (or intermediate) relation(s) i is referenced 
by subquery j of query k. 

ijp[m]
k

Z  is 1 if input (intermediate) relation i is referenced 
by the left (m = 1) or right (m = 2) previous operation for join 
operation j of query k; otherwise, it is 0. 

 

(1) represents the total query execution time for the query 
part Q(u,t) of the update transaction and is the sum of all local 
processing times and communication times. (2) represents the 
local processing time for the subquery j of the query k when 
the subqueries are unary operations such as the selection or 
projection operation. (3a) represents the I/O time in storing the 
intermediate results of previous operations to the site of the 
current join operation before the execution of the join. (3b) 
represents the I/O and CPU processing times for the current 
join operation. (4) represents the communication time for join 
operations when either of the (intermediate) relation(s) to be 
joined is not produced at the site at which the join operation is 
performed. (4) is also used for the communication time for 
sending the final result if the final operation is not performed 
at the query originating site. Since there is only one previous 

operation for the final operation, we assume that 
Zijp[2]

k

 for all 

i is 0 (also 
Bijp[2]

k

 = 0). 

 

F. Workload Model 
We define the unbalanced factor (UBF) as the sum of the 

absolute deviation of site workloads from the average network 
workload. The objective function for workload balancing is 
then defined to minimize UBF. Minimization of UBF gives a 
workload distribution that has approximately balanced the 
network workload. Note that if the network workload among 
sites is balanced totally (all site have the same workload), the 
absolute deviation becomes zero. The objective function is 
defined as follows. 

 

Minimize UBF = 
LI  -  LI  +  LC  -  LCt avt t avt    

subject to  

                  
LI  =  

1

N
 LIav tt

 

                  
LC  =  

1

N
 LCav tt

 

 

where LI t  and LC t  represent the I/O and CPU workloads 

(I/O and CPU times), respectively, at the site t; LIav  and 

LCav  represent the average I/O and CPU workloads (I/O and 
CPU times), respectively, in the entire database; N represents 

the number of sites. We now define LI t  and LC t  as follows: 

(1) For a selection or projection, 

    LI t  = 
F(k, t) Y  IO  Z  Bjt

k

jk t ij

k

i ij

k 
                    

    LC t  = 
F(k, t) Y  CPU  Z  Bjt

k

jk t ij

k

i ij

k 
            

(2) For a join,  

LI t  = 
F(k, t) Y  IO  Z  B

k jt

k

j t im m ijp[m]

k

ijp[m]

k   
 +  

              
F(k, t) Y  IO  Z  Bjt

k

jk t ij

k

i ij

k 
           

    LC t  = 
F(k, t) Y  CPU  Z  Bjt

k

jk t ij

k

i ij

k 
      

where 

F(k, t)  represents the frequency of query k originating at 
site t, 

jt
k

Y  represents operation allocation, and is 1 if subquery j 
of  query k is done at site t,  otherwise it is 0, 

ij
k

Z  is 1 if input (or intermediate) relation(s) i is referenced 
by subquery j of query k, 

ijp[m]
k

Z  is 1 if input (intermediate) relation i is referenced 
by the left (m = 1) or right (m = 2) previous operation for join 
operation j of query k, otherwise it is 0, 

IO t  is the I/O cost coefficient (speed) of site t in msec per 
page (4k bytes), 

CPUt  is the CPU cost coefficient (processing speed) of 
site t in msec per page (4k bytes), 

Bij

k

  is the number of blocks of relation i accessed by 
subquery j of query k, 

Bijp[m]

k

 is the size of an input (intermediate) relation where 
p[m] represents two previous operations of the join operation 
j: m is 1 for the left previous operation, and 2 for the right 
previous operation, and 

m  represents the selectivity of the two previous operation  
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    (m = 1 or 2), and the selectivity refers to the ratio of 
relation size reduction. 

 

(3) For the update part of an update transaction, 

    LI t  = 
F(u, t) IO  U X B  t i itiu i + 

F(u, t) IO  U X L  t i itiu i  

  LC t  = 
F(u, t) CPU  U X B  t i itiu i  

where 

F(u, t)  represents the frequency of update originating at 
site t, 

Xit  represents data allocation; relation i is stored at site t, 

Bi

u

 is the number of blocks of relation i updated by update 
u, and 

Li  is the update value in number of blocks for the relation 
i, which is the same as the final result from the query part of 
an update transaction. 

Note that the query part of an update transaction is the 
same as (1) and (2) above. 

 

III. Framework for Total Cost 
Minimization and Workload 

Balancing 
 

As described in the previous section, workload balancing 
can be used as the sole objective for the operation allocation as 
opposed to total cost minimization, and in our case, the total 
cost is the combination of total time and response time. Our 
purpose, however, is to use workload balancing as the 
secondary objective for the data allocation while keeping total 
cost minimization as the primary objective. In order to 
accomplish this objective, we employ four algorithms: one for 
the operation allocation whose objective is minimizing the 
total cost, one for workload balancing whose work workload 
depends on the optimized operation allocation resulted from 
the operation allocation algorithm, and two for the data 
allocation. The framework is proposed that these four 
algorithms interact with each other as shown in Fig. 4. 

In order to obtain better data allocation in terms of total 
cost as well as workload balancing, each step in the 
framework is adopted to use the genetic algorithm. four 
genetic algorithms interact with each other according to the 
following steps: 

(1) GA I produces the initial data allocation population 
by using binary strings. Note that the fitness of GA I is the 
total cost. 

(2) GA II also produces the initial data allocation 
population, but by using a different random number seed (for 
example, 0.5) from the one (for example, 0.1) used for GA I. 
Note that the fitness of GA II is UBF. 

(3) For each chromosome (data allocation scheme) from 
GA I, find the best operation allocation for each query (or 
query part of an update) by using GA III. In this step we 
obtain the fitness for  each data allocation scheme in terms of 
the total cost. 

(4) For each chromosome (data allocation scheme) from 
GA II, find the best operation allocation for each query (or 
query part of an update) by using GA IV. In GA IV, the best 
operation allocation for each query is obtained in terms of the 
total cost like GA III. But, once the best operation allocation 
for each query has been obtained, UBF is calculated for each 
data allocation scheme (chromosome of GA II) based on the 
best operation allocation obtained. So in this step we obtain 
the fitness for each data allocation scheme in terms of UBF 
based on the best operation allocation. 

(5) Once all fitnesses (total costs) for GA I and (UBFs) 
GA II have been determined, the migration of selected 
chromosomes between GA I and GA II takes place. The 
number of chromosomes to be migrated is selected according 
to the random number which is always less than one-half of  
the total number of population, and these chromosomes are 
then selected based on their fitness (from the best one) in the 
current population of GA I and GA II respectively. Then the 
best chromosomes selected from GA I are migrated into the 
population of GA II, and at the same time the same number of 
the worst fitness chromosomes in GA II are removed from the 
population in GA II. The same migration procedure occurs 
from GA II to GA I. The forced migration occurs at each 
generation during one-half of the total number of generations, 
and at the generation when the best fitness is not changed for 
three consecutive generations during subsequent generations. 

Data Allocation
Total Cost Minimization

Operation Allocation for

Operation Allocation for

Load balancing

Migration

(GA I)
(GA III)

(GA IV)

Data Allocation

(GA II)

Total cost

UBF

 

Figure 4: Framework for Total Cost Minimization and 
Workload Balancing with Four Genetic Algorithms 
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The reason to make the forced migration occur at the 
higher frequency during early generation and slow subsequent 
generation is that during early generation, there are not many 
differences between GA I and GA II in terms of total cost and 
UBF; but during later generation, since chromosomes in GA I 
and GA II are already optimized in terms of total cost and 
UBF, respectively, the migrated chromosomes do not make 
any significant contribution. The migration employed in this 
research, therefore, allows GA I to create as many diverse 
chromosomes as possible during early generations. This 
migration can be compared to the concepts of migration 
demonstrated by Potts et al. (1994).  

(6) Steps 3, 4, and 5 are repeated until the GAs I and II 
have reached the maximum number of generations.  

 

IV. Experiments and Results  
 

In this section, we investigate how not only the data 
allocation pattern but also the unbalanced factor is changed 
when a different objective function is used. We also 
investigate the effect of migration between two genetic 
algorithms. We will discuss this effect in terms of the total 
cost as well as the unbalanced factor.  

Finally, we compare two data allocation genetic 
algorithms, one using only interaction between total cost 
minimization operation allocation and data allocation (referred 
to as GA I/III) and one using only interaction between 
workload balancing operation allocation and data allocation 
(referred to as GA II/IV), using thee different objective 
functions: total time, response time, and the combination of 
both.  

For all experiments, we assume that the communication 
speed between any two pairs of sites is identical, which is set 
at 2.0. The processing speeds of all sites are also assumed to 
be identical, and are set I/O and CPU at 0.1 and 1.2, 
respectively. The configuration of the distributed database is 
assumed to consist of five sites and seven relations. 

 

A.  Effect of Objective Function 
The research questions investigated are as follows, and 

they are reiterated in terms of the unbalanced factor: 

(1) for the total time minimization problem, the 
execution time can be minimized when queries are executed 
by using the smallest set of sites, which in turn means data 
themselves should be allocated to as few sites as possible. 

(2) response time minimization can be obtained by 
having a large number of parallel local processing and 
transmissions at different sites as much as possible, which in 
turn means data should be allocated to as many sites as 
possible. 

(3) When the two objectives above are combined, data 
allocation should find a compromise suitable for total time 
minimization and response time minimization. 

    

The above statements imply that the unbalanced factor for 
the data allocation scheme resulting from total time 
minimization should be larger than that of the data allocation 
scheme from response time minimization. And the unbalanced 
factor for the data allocation scheme resulting from 
minimization of a combination of total time and response time 
should be between those from total time minimization and 
response time minimization.  

 In order to investigate the effect of objective functions in 
terms of the unbalanced factor, the query and update 
originating site and their frequency are set as shown in Table 
1. And Table 2 shows solution patterns for all three 
minimization problems converge around the 20th generation. 
The results at the 20th generation are shown as follows: As 
expected, in the case of total time minimization, four relations 
are allocated to site 3 while two relations are allocated to sites 
1 and 2, which in turn means that UBF is high. In case of 
response time minimization, one or two 

 

 Table 1: Site and Frequency for Transactions 

Transaction q

1 

q

2 

q

3 

q

4 

Q 

11 

Q 

12 

Q 

13 

u1 u2 u3 u4 

Site 5 3 2 1 4 1 2 1 5 3 4 

Frequency 5
0 

5
0 

5
0 

5
0 

2 2 2 10 10 10 10 

 

Table 2: Solution Patterns 

 

 

 

 

 

 

 

 Notation: T (total time minimization) 

 R (response time minimization) 

             C (combination of both) 

              + U (with update transactions) 

Note: Column: Sites;   Row: Relations 

 

Total Time Minimization:  

Time = 223727, UBF = 170779.6 

Response Time Minimization:  

Time = 207027, UBF = 83285.8 

T + U R + U C + U 

10000 01000 10000 

00001 00010 00001 

00110 10000 00100 

01000 10000 10000 

11100 00100 00100 

00100 00001 01001 

00100 00100 00001 
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Combination: Time = 216242.5, UBF = 133183.6 

 

relations are dispersed among five sites, so UBF (83285.8) 
is much less than that of total time minimization (170779.6). 
In case of the combination of total time and response time 
minimization, the UBF is in between those of total time and 
response time minimization. This results show that the genetic 
algorithm finds solutions in a reasonable way according to its 
objective function. 

B. Effect of Migration  
The effect of the forced migration is investigated in this 

section. We first run the data allocation genetic algorithm 
without workload balancing, naming it OADA (Operation 
Allocation with Data Allocation). Then the genetic algorithms 
explained in this paper are run using the same query and 
update transactions, named LBDA (WorkLoad Balancing with 
Data Allocation including cost minimization operation 
allocation), for convenience. 

As in the previous experiment, the genetic algorithms 
converge around the 20th generation. So all results are 
obtained at the 20th generation, and the number of 
chromosomes (the population size) is 20. First, in the case of 
total time minimization, Fig. 5 plotted against 20 
chromosomes shows that the UBFs of LBDA are much less 
than those of OADA, while the best total time of OADA is 
223727 (UBF = 170779) and that of LBDA is 223137 (UBF = 
52583). This result shows that LBDA not only gives better 
total time but also much better UBF. Since OADA attempts 
only to minimize the total time, as a result the total time is 
minimized but UBF actually may be increased, as explained in 
the previous section. LBDA, however, not only attempts to 
minimize the total time but also UBF, and since the migration 
leads to more diverse chromosomes, LBDA results in better 
total time and UBF. This result shows the superiority of 
LBDA over OADA. 

Second, in the case of response time minimization, there is 
not much difference between OADA and LBDA in terms of 
response time and UBF. As we described in the previous 
section, the response time minimization naturally disperses 
data among sites, and as a result, UBF is also minimized. 
These results are illustrated in Fig. 6.  
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Figure 5: UBF by Total Time Minimization 
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Figure 6: UBF by Response Time Minimization 
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Figure 7: UBF by Minimization of Combination of Both 

Third, in the case of minimization of the combination of 
total time and response time, the difference of UBF between 
OADA and LBDA is not as much as those resulted from total 
time minimization. But the total cost of LBDA is 238835, 
which is better than that of OADA, which is 239757. Fig. 7 
shows the slightly improved UBF of LBDA over OADA when 
we visually inspect the patterns between two results, although 
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we do not prove that statistically. In summary, the above 
results show LBDA is superior to OADA. 

 

C. Comparison between Three Genetic 
Algorithms  
In this section we compare three genetic algorithms, 

OADA, LBDA, and one more genetic algorithm employing 
GA II and IV in Figure 4; that is, its objective is to minimize 
UBF, and we name it as UBFDA. The comparison is made in 
terms of total time, response time, and the combination of 
both. Three genetic algorithms start with the same initial 
populations. Since the objective of OADA is to minimize total 
cost, a combination of total time and response time, whereas 
that of UBFDA is to minimize the unbalanced factor, even 
though three genetic algorithms start with the same initial 
populations, the final results will be different in terms of total 
time, response time, and the combination of both respectively. 
One more issue we are investigating in this experiment is the 
implication of workload balancing; that is, workload balancing 
can lead to significant reduction in the average query response 
time since the waiting time for CPU and I/O services at sites 
of queries is reduced when queries are executed at the 
dynamic (run-time) environment. But since we employ only a 
static (compile-time) workload balancing in this research, it is 
hard to see the effect of actual response time (run-time) 
reduction of queries due to workload balancing unless we 
actually run simulation models (Carey and Lu 1986) or use 
mathematical queuing models based on data allocations and 
operation allocations (or workload balanced operation 
allocation) resulting from two genetic algorithms. Applying 
simulation or queuing models is, however, out of scope of this 
research. We, therefore, merely compare two genetic 
algorithms in terms of how total time, response time, and the 
combination of both are changed.  

Table 3 shows the results based on two genetic algorithms, 
OADA and UBFDA. In case of total time minimization, the 
total time of UBFDA (19,195) is increased as compared to that 
of OADA (15,595) even though UBF of UBFDA is 
significantly reduced. The main reason is  that since UBFDA 
tends to spreads the workloads among sites, the total time is 
increased due to increased communications (note that the total 
time is minimized when subqueries are executed at the same 
site as much as possible).  

In case of response time minimization, the response times 
are almost the same according to two genetic algorithms, 
whereas UBF of UBFDA is reduced as compared to OADA 
(7,694 -> 3,353). The reason is that response time 
minimization naturally spreads the workloads among sites in 
order to maximize the parallel executions of subqueries so that 
there is not much difference of response time itself between 
two genetic algorithms. In case of the combination of both, 
there is not much difference between OADA and UBFDA, but 
the interaction between the total time and response time 
minimizations leads to a little bit more reduction of total cost 
as compared to the reduction of response time. 

The execution results of total time, response time, and 
combination of both up to the 20th generations are shown in 
Fig. 8, 9, and 10, respectively. All three genetic algorithms are 

 

Table 3: Comparison between Two Genetic Algorithms 

Objective 
Genetic 

Algorithm 
Time UBF 

Total Time 

UBF 

OADA 15,595 11,967 

UBFDA 19,159 2,200 

Response Time 

UBF 

OADA 16,848 7,694 

UBFDA 16,914 3,953 

Combination 

UBF 

OADA 35,437 38,098 

UBFDA 36,179 3,121 
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Figure 8: Comparison of Three Genetic Algorithms 

(Total Time Minimization) 
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Figure 9: Comparison of Three Genetic Algorithms 

(Response Time Minimization) 
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Figure 10: Comparison of Three Genetic Algorithms 

(Minimization of Combination of Both) 

stopped at the 20th generation since the solutions are all 
conversed around the 20th generation. All time cost for two 
genetic algorithms, OADA and LBDA, continue to decrease as 
the number of generation is increased, but those of UBFDA 
are not since its objective is not cost (time) minimization. One 
notable thing in case of total time minimization is that the total 
time tends to be increased as the number of generations is 
increased. 

This result indicates that the total time minimization and 
workload balancing have a counter effect on each other. For 
all three cases, the results also show that LBDA always finds 
better solutions compared to OADA. 

 

V. Conclusion 
 

This paper proposes the framework for total cost 
minimization and workload balancing. It is more realistic to 
solve the integrated problem of both data and operation 
problem based on total cost minimization and workload 
balancing than solve each problem separately. To our best 
knowledge, this paper is the first attempt to consider total cost 
minimization and workload balancing in determination of data 
allocation and operation allocation. Computational results 
show the effectiveness of the framework. The proposed 
framework is more likely to provide a better data allocation 
and operation allocation for the performance of partially 
replicated distributed database systems. 
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