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Abstract—This paper presents a new algorithm of decision 

rules with oblique conditions induction. It bases on the Fisher’s 

Linear Discriminant Analysis as a tool of finding an initial classes  

separation. This technique has a good ability of oblique 

dependencies generalisation what reduces the number of decision 

rules and their complexities. 
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I.  Introduction 
Machine learning is the wide branch of the computer 

science that contents algorithms and methods of building 
models from the data. The nature of the data and the goal of 
the analysis usually divide machine learning into two main 
groups: supervised and unsupervised learning. 

In the case of the unsupervised learning, data examples do 
not contain any decision attribute. In the case of the supervised 
learning data examples contain two types of attributes: one (or 
more) is considered as the dependent from the remaining ones 
and is called the decision attribute or just the class.  Then it is 
claimed that there exist some dependencies between 
conditional attributes and the class. In other words, supervised 
algorithms try to find (or describe) existing dependencies in 
the data. The name of the supervised learning comes from the 
fact, that the built model can be evaluated on the data which 
class labels are known.  

Supervised methods are also divided into two groups due 
to the nature of the dependent attribute: if the decision 
attribute takes values from the finite set (set of discrete values) 
it is commonly named as the classification and the regression 
otherwise.  

There are many of algorithms of classification. Just to 
mention the most important of them: artificial neural networks 
[16] , Support Vector Machines [4], decision trees [15],  linear 
discriminant analysis [8]. As the most popular methods of 
regression apart from also applicable neural networks and 
Support Vector Machines, also splines [3], kernel estimators 
[21][27], radial basis functions [5], additive models [9], 
projection pursuit regression [9] should be mentioned. 

All algorithms of the supervised and unsupervised learning 
can be also divided due to the criterion of the model being 
transparent (or just interpretable) for the user or in other words 
– the transparency of the decision making process.  
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There are models of the classification (or regression) 
which only say ―how‖ the model behaves and models, which 
say ―how‖ and ―why‖ the particular decision has been made. 
The most popular algorithms that work like ―black boxes‖ 
(none explanation, just the answer) for the both – classification 
and regression tasks – are neural networks or Support Vector 
Machines. 

When the interpretability of the classification model is 
important the induction of decision rules from the data 
examples (example based learning) becomes the most usable 
technique. Decision trees and decision rules can give quite 
good results in the most of cases but they have the strong 
limitation: the most of algorithms generate decision rules that 
are hyperrectangles which edges are parallel to axes of the 
coordinates system. This means that for two classes that are 
linearly separable with the hyperplane that is non-parallel to 
any coordinates system axis the generated set of rules will 
contain a lot of small rules, covering only the small part of the 
space and not describing any significant dependencies. 

The main goal of the requested application is the 
development of the new algorithm of induction rules with 
oblique condition directly from the data, also with the usage of 
the Support Vector Machine and the new local measures of 
local classification error. 

The paper is organised as follows: next section shows the 
state of art algorithms of induction of rules with oblique 
conditions and the authors’ previous approaches in this area, 
then the description of decision rules, oblique decision rules 
and Linear Discriminant Analysis backgrounds are presented. 
Afterwards, the new idea of oblique decision rule induction is 
introduced, followed by the results of experiments and a short 
discussion. The paper ends with some final remarks and 
description of further works. 

II. Related and Previous Works 
The rule induction is a problem widely encountered in the 

literature. According to the goal of the analysis there are two 
groups of rule induction algorithms. First of them generates 
association rules and second of them decision rules. 
Association rules describe dependencies between attributes 
that do not give any decision. Methods of association rules 
induction can be also applied for the data with the decision 
attribute. Decision rules describe dependencies between 
conditional attributes and the class. In this project only the 
decision rules belong to the scope of interest. 

The most popular approach of the rule induction is the 
―from coverage‖ strategy [6][7]. For every class rules are 
generated as long as all objects from this class are covered by 
at least one decision rule. It is also called the ―separate and 
conquer‖ strategy [11] as two alternating steps can be pointed: 
learn the rule that covers (describes) the part of the given 
training examples and remove them from the training set (the 
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separate step) and recursively learn another rule that covers 
some of the remaining examples (the conquer step). 

The common feature of all generated decision rules is their 
shape in the data features space: they are hyperrectangles 
which edges are parallel to axes of the coordinates system. 
This language of description is sufficient in most of problems 
is insufficient for the data that represents oblique 
dependencies. But even if it is possible to separate two classes 
linearly with the hyperplane what is non-linear to all axes in 
the coordinates system (only one oblique rules per decision 
class is needed) the generated set of rule will contain a lot of 
rules. What is also significant there will be a lot of small rules 
in this set, rules that cover only the small part of the data space 
– possibly only the object that generated this rule and its very 
close neighbourhood. It has a very important consequence: the 
final set of rules should be the compromise between the 
accurate model, containing all rules, but very complex and the 
model containing only the best, strongest rules, but also 
having good ability of generating the dependencies in the data 
with the cost of an acceptable level of accuracy decrease. 

Algorithms of induction of decision rule with oblique 
decisions can solve the problem presented above. In these 
methods the single condition of the rule is the fact of lying the 
point over or under the certain hyperplane. There are several 
propositions in the literature, proposing different ways of rule 
induction and some of them give oblique decision rules. Two 
main branches are based on the neural networks [14][24][25] 
and Support Vector Machines [1][10][12][13][22].  Also the 
induction of decision rules from the decision trees with the 
oblique conditions is popular [2][20]. 

As it was mentioned above, Support Vector Machines are 
considered as the starting point of oblique rule generating very 
often. One of the approaches [1] can be described as the 
extrapolation of Support Vector Machine results on the whole 
dataset space, which is the input of the standard decision rule 
induction. After the nonlinear Support Vector Machine are 
trained ―empty regions‖ of the dataset space are filled with the 
artificial objects which class is Support Vector Machine 
dependent. Then mixed (original and artificial) set of objects 
generates hyperrectangular decision rules. 

Fung et al. [10] base on linear Support Vector Machine 
results. After the data normalisation hyperrectangular decision 
rules covering the hyperplane introduced halfspace are 
searched. This means that linear Support Vector Machine 
results are just the base for hyperrectangular decision rule 
induction what is the opposite approach to the requested 
research. 

The ITER algorithm [12] generates regression decision 
rules from any trained ―black box‖ regression model like 
artificial neural networks or support vector machines but they 
also remain the hyperrectangular. Its later modification 
Minerva [13] assures rules to be non-overlapped but still non-
oblique. 

Very interesting approach is presented in [22] called 
SVM+Prototypes. Each class is divided into subclasses and 
their prototypes with the clustering algorithm. Then, for each 

subcluster the decision rule of the form of an ellipsoid or a 
hyperrectangle is inducted.  

As the mentioned groups start from the non-rule 
classification methods, the CHIRA [26] starts from the set of 
hyperrectangular decision rules and postprocess them to the 
oblique ones. The algorithm merges rules iteratively, in pairs. 
It applies the procedure of determining convex hulls for 
regions in a feature space which are covered by aggregated 
rules. Two different steps of postprocessing are defined: rules 
joining and rules aggregation. The rules joining saves the 
hyperrectangular form of the rule as it is the result of merging 
two rules that contain the same attributes in elementary 
conditions. Rules aggregation builds the rule with oblique 
conditions. The aggregation procedure relies on the 
assumption that a single decision rule indicates a convex area 
in a particularly chosen feature subspace. CHIRA tries to 
iteratively join such areas in order to obtain larger convex 
regions, from which hyperplanes equations can be calculated. 
To determine convex region for initial rules, the algorithm 
extracts boundary points from elementary conditions, builds a 
set of rule vertices upon them and finally, applies convex hull 
calculation procedure.  

The ADRED algorithm starts directly from the data to 
generate oblique rules [23]. In this approach each rule is 
generated for some defined cluster of objects. For each pair of 
axes a number a number of hyperplanes is generated. A 
hyperplane is considered as an optimal if it maximizes the 
number of negative points (points not from the class described 
by the generating rule) over the hyperplane and while keeping 
all positive points under the hyperplane. 

In the previous works several two other approach of 
oblique decision rule induction were presented. First of them 
based on grid search of parameters of each oblique condition 
[19]. This caused very high computational complexity. In the 
second approach ([18] and improved in [17]) classes were 
divided into subclasses (with k-means algorithm) and each 
subclass was described with the one hyperrectangle which 
edges was parallel to PCA determined directions. It was not 
resistant to the overlapping and non-convex subclasses. 

III. Decision Rules 
Decision rule can be defined as the following logical 

formula: 

 IF cond1 /\ cond1 /\ … /\ condn  THEN class = c 

where condi denotes some logical expression of the type 
a op A: a is a value of the variable, op is the one of logical 
operators (=; <; >; ≥; ≤; ,,in’’) and A is a constant (an interval 
for the ,,in’’ operator). The c in the rule conclusion represents 
one of the existing class labels. 

The main goal of rule induction is to build dependencies 
that can be interpreted by the user or the domain expert. 
Focusing on this goal is limited by the rules ability of 
generalisation – we are not interested in big set of small, 
particular rules, explaining the nature of a very small number 
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of objects. It is very common situation when we approve a 
small model accuracy decrease as the cost of limitation the 
number of rules or their complexity. Typical methods of the 
mentioned rule postprocessing step are rules filtering, joining 
and shortening. 

A. Oblique Decision Rules 
Most popular algorithms find decision rules that are 

hyperrectangles. This limitation avoids finding small sets of 
rules for datasets with typical oblique dependencies and 
implies finding big sets of smaller rules instead. 

To define the oblique rule the definition of single oblique 
condition must be shown. Let’s consider the k–dimensional 
space of objects. As the base of separating condition the 
following k–dimensional hyperplane can be used: 

 H1x1 + H2x2 + … + Hkxk+ Hk+1=0 

For an object O the following coefficient can be defined: 

 H1o1 + H2o2 + … + Hkok+ Hk+1 

where o1, o2, …, ok are coordinates of the object O. With 
this notions as the single oblique condition one of the 
following can be used: 

 ≥≤ 

B. LDA Background 
Linear discriminant analysis (LDA) [8] is a statistical tool 

for finding the linear combination of objects’ features that 
separates two classes from each other. In the original 
approach, the direction of linear projection of points which  

This approach is based on assumptions that probability 
distribution functions of each class have normal distribution 
and equal covariances. 

IV. LDA Oblique Decision Rules 
In the previous paper [19] the grid search of oblique 

condition parameters was applied, what implied a big 
complexity of the algorithm. The current approach uses LDA 
as a much faster statistical tool for finding a single oblique 
condition parameters. 

For each class a maximal number of rules R and maximal 
number of conditions in the rule C are assumed. The strategy 
of building a single rule is a ,,separate-and-conquer’’ strategy. 
In the one step the maximal (from the number of oblique 
conditions point of view) rule is generated and in the second, 
all positive objects from the considered class (objects, covered 
by the newly created rule) are removed from the training set. 

Single rule is created iteratively: while the rule is not 
maximally long or is not exact (covers only positive objects) 

the oblique condition with the LDA is searched. When the 
condition is found all objects below the hyperplane (H(O) < 0) 
are removed from the further rule generation. 

When there are only two classes in the data (e.g. 1 and -1) 
it is easy to perform the rule induction – only two iterations, 
one for the class. In other cases – when there are more than 
two classes – in each iteration we have to change the problem 
into the binary as follows: for the classes from 1 to n, in i-th 
iteration change all labels different from i to -1 and all labels i 
to 1. 

V. Case Study 
Let us consider the following artificial dataset (taken from 

[26]). It is shown on the Fig. 1. 

 

Figure 1.  Two-dimensional artificial data (2D). 

This data contains 1000 points randomly distributed in the 
square (0,0)x(1,1) which are assigned to two almost balanced 
classes (466 dots and 534 crosses). We can observe that class 
that point belongs to depends on the lying over (crosses) or 
under (dots) the line y = x. This cause that it is very hard to 
describe this simple dependence with rectangular decision 
rules.  

 

Figure 2.  Visualisation of JRip generated decision rules. 

A simple effort to cover the class of dots with the usage of 
JRip algorithm (a Weka implementation of RIPPER 
algorithm) is shown on the Fig. 2. 
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There are 9 rectangular  and overlapping rules (the increase 
of the overlapping level of the data space is represented with 
the increase of the grey level in the image) describing the class 
of dots. From the other hand, the usage of LDA based oblique 
decision rules gives us only one rule (with three parameters) 
that can describe the considered class (as it is shown on the 
Fig. 3.). 

 

Figure 3.  Visualisation of single oblique conition decision rule  

obtained with the LDA. 

VI. Results 
Experiments were performed on several commonly known 

benchmark datasets from the UCI ML Repository and three 
artificial datasets with the typical oblique dependencies from 
[26]. First of these three datasets was presented on the Fig. 1.  

 

Figure 4.  Three-dimensional artificial data (3D). 

 

The second one contains three-dimensional data (called as 
3D) with two unbalanced classes in the unitary cube: circles 
are grouped in one of the cube corners (Fig. 4.). Last one 
dataset are two-dimensional and balanced but the class of dots 
is not coherent (Fig. 5.). 

The new method of rule induction was compared with the 
JRip algorithm, the Weka software implementation of the 
RIPPER [7]. 

 

Figure 5.  Visualisation of the second two-dimensional artificial data (2D2). 

For each dataset a 10 cross-fold validation model of train 
and test iteration was performed and averaged results are 
presented in the Table I. 

TABLE I.  COMPARISON OF RESULTS OF JRIP AND LDA OBLIQUE 

RULES 

Dataset 
JRip LDA Oblique Rules 

acc [%] #rules #cond acc [%] #rules #cond 

2D 96 10 18 99 2 6 

3D 95 8 19 99 4 28 

2D2 96 9 18 97 6 36 

Ripley 86 2 1 82 2 6 

Balance 81 11 30 91 3 15 

Breast 96 6 10 93 2 20 

Bupa 65 3 4 67 6 84 

Heart 79 5 8 84 2 28 

Iris 95 3 4 93 5 45 

Parkinson 88 5 9 83 2 46 

Pima 75 3 5 76 2 18 

 

The comparison is presented due to the accuracy of 
prediction (acc [%]), number of rules (#rules) and number of 
parameters of the model (#cond). This last parameter is the 
sum of conditions in all rectangular rules and the number of 
coefficients of all oblique conditions. 

VII. Discussion 
When the accuracy of prediction of two classifiers are 

compared for 7 datasets LDA Oblique Rules gives better 
results than JRip (accuracies of LDA OR typed with the bold 
font). It also must be stressed that JRip builds models with the 
default rule(class) – in case when an object does not recognize 
any rule it is classified as the default class (the usage of default 
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rule). Therefore, the total number of rules and conditions of 
JRip results describes only the one class (to be more precise – 
the number of rules must be decreased by one, the number of 
conditions remains). Only two sets have more than two 
classes: Balance, Iris (marked with a underlined font). This 
means that Breast dataset is described by LDA OR with only 
one rule per decision class, while JRip needs five rules per 
class (assuming the comparable complexity of description of 
the default class).  

VIII. Conclusions and Further 
Works 

The usage of LDA as the statistical tool for induction of 
decision rules with oblique conditions gives several significant 
remarks. First – it is not appropriate tool for datasets which 
classes are wrapping themselves. It is a little bit weaker 
assumption that convex classes: classes can be concave but 
their convex complements intersection must be an empty set. 

This limitation is strongly connected with the limitation of 
the LDA method, mentioned in the beginning of the paper. 
What is very important to stress is all assumptions are global. 
This means that any globally based measures cannot give 
satisfactory results of oblique decision rules induction in cases 
of wrapping classes. 

It seems that this approach of direct oblique decision rules 
needs the locally based measure of linear separation of classes, 
which will help to improve the final decision rules qualities. 
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