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Effective properties of optimized composites 
Petr P. Prochazka 

 
Abstract—Homogenization and shape optimization of fibers in 

a composite structure has been solved by many authors mostly by 

means of FEM. In this paper a new procedure for homogeniza-

tion of composites is proposed, based on the idea of Hashin 

bounds, leading to combination BEM-FEM approach, which 

seems to be promising right to applications to composites. 

Keywords—Composites, effective properties, combination 

FEM-BEM, homogenization, optimization 

I.  Introduction 
Conventionally, the optimal shape design problem consists of 

minimization of an appropriate cost functional with certain 

constraints, such as equilibrium and compatibility conditions 

and design requirements. One of a reasonable and practical 

form of the cost functional respects the minimization of the 

strain energy of the body subject to a specific load. 

     The formulation is naturally connected with finite element 

method, which starts with energy formulation. On the other 

hand combination of finite and boundary elements seems to be 

more suitable for such problems. 

     Advantages of the boundary element method in solving 

shape optimization are obvious from formulations presented in 

paper [1]. The way on how to formulate the localization and 

concentration factors in terms of the boundary integrals the 

idea of the Hashin-Shtrikman variational principles, [2] is used 

and developed in this paper. 

     Since we are concentrated on optimization of composite 

structures using homogenization, the theory for periodic media 

given by Suquet, [3] is fully utilized in this paper. The trick 

presented in [4] is also used in the optimization problem.  

II. Homogenization 
The unit cell is considered, as described in Fig. 1. This unit 

cell is cut out of the composite and periodic boundary condi-

tions are applied, according to [3].  

     The elasticity system (equilibrium equations, kinematical 

conditions and Hooke’s law) is defined in  Ω  as: 
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and periodic boundary conditions along the boundary of the 

unit cell Ω are given, see [3]. Stress σ , strain ε and 

displacement u  are to be determined, ∇is nabla operator.  

     The geometry and denotation is seen from Fig. 1. The 

shaded area is considered in the next computation, because of 

symmetry. 

 
Fig. 1: Geometry and denotation of the unit cell 

 
Localization consists of the solution of system of elasticity 

equations on the representative volume element (or unit cell) 

for concentration factors 
f

A of fibers and
m

A for matrix: 

  ∈ ,)(∈ ,)( mmmfff ΩεΩε yuyu klijklijklijklij EAEA        (2)                                   

The local strain tensor )(uε is split into its average E and a 

fluctuating term )(*
uε as: 

     0)(      ),()(     , )()( ****  uεuεuεuεEuε (3)                                   

The fluctuating displacement *
u  may be considered a period-

ic field, up to a rigid displacement that will be disregarded.  

     Under the above described circumstances Hill's energy 

condition holds valid, as proved, e.g., by Suquet, [3]: 

ijijijij ES )()( yy εσ                                 (4) 

    Using (2), (3) and (4) the components of the overall stresses 

ijS are written in relation to the overall strains ijE as: 
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where f.   stands for the average on fiber and m.  is the 

average on matrix, . This averaging process is made in such a 

way that the integrals are taken over fiber and matrix, respec-

tively, and 1 meas Ω  and *
L is the homogenized stiffness. 

 

III. Localization  
In the first step, the unit cell obeys static equilibrium equations 

and linear homogeneous Hooke's law (homogeneous and iso-

tropic medium): 

  ,in   ,000 Ωεσ klijklij L                           (6) 

and the boundary conditions at the concrete state.
0
ijklL are 

components of not yet determined material stiffness matrix 
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(stiffness tensor). These components will be stated later. Such 

a medium is called comparative one. 

     The solution of (6) is easy, as the comparative medium is 

homogeneous and isotropic: 

 ,in   , 00 Ωε ijijjiji EyEu  and boundary conditions on Ω (7) 

     In the second step a geometrically identical unit cell is con-

sidered. Also the loading and boundary conditions on Ω  

remain valid. Define 
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     Our next aim is to determine primed quantities, compo-

nents of displacement vector iu and components of strain and 

stress tensors ijε and ijσ . In order to do so, system (1) has to 

be formulated for the primed set. We start with Hooke’s law, 

which is valid for heterogeneous medium: 

Ωτεεσ in        )()()()()( 0
yyyyy ijklijklklijklij LL        (8)               

where ijτ are components of polarization tensor and the direct 

relation between stresses and strains becomes homogeneous 

and isotropic, so that integral formulation of elastic problem 

may be formulated.       

     Since the material stiffness tensor appears to be non-

homogeneous and anisotropic, idea used in [2], will be 

adapted here.  From (8) it follows immediately                   
0][         ,][ ijklijklijklklijklij LLLL  ετ                (9)                         

which can be considered a definition of polarization tensor. 

Moreover, a transformation to the primed system will not dis-

turb the direct relation stresses – strains, as after substituting 

(9) to (73) gives: 
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     Since both 
0
i and jij σσ  are statically admissible, it holds (the 

following equations must be defined in the sense of distribu-

tions): 
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     Owing to constant distribution of Ωin    0
ijklL , the equivalent 

integral formulation can be written as: 
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Ωξ      (13)    

where mnc  are components of a tensor depending on position 

Ωξ and the quantities with asterisks are given kernels. 

     Differentiating (12)  by nξ  and putting Ωξ  provides 
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+ convected term                                                                (14) 

 

     First, let f0
ijklijkl LL  . Eliminating unknown boundary val-

ues from (13) obtain the relation  
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if 
m0 ≡ ijklijkl LL . This process leads us to a fourth-order "con-

centration factor tensor" A defined as 
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where the superscript fp  holds for fΩy and m≡p  for 

m∈Ωy . Since it obviously holds 
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f
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one does not need to compute both concentration factors. It is 

sufficient to draw concentration, say, on fiber, when dealing 

with concrete composites (the fiber ratio is very small), or on 

matrix, if the matrix volume ratio is large and the material 

behavior of stresses on matrix is almost uniformly distributed.  

 

IV. Optimization  
A natural question for engineers dealing with composites 

could be: determine such shape of fibers that the bearing ca-

pacity of the entire composite structure increases and attains 

its maximum. This is a problem of optimal shape of structures 

and can be formulated for composites as follows: Let the uni-

form strain field klE be applied to the domain Ω  (in our case, 

a periodic distribution of fibers is considered). This produces 

concentration factors 
f
mnklA  and 

m
mnklA , obeying (16,17). 

Let ),,( mf ΩΠ AA be a real functional of f
mnklA , m

mnklA  and Ω . 

The problem of optimal shape consists of finding such a do-
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main fΩ from a class O  of admissible domains, which mini-

mizes Π . This may symbolically be written as 

Minimum { ),,( fmf ΩΠ AA ; }),( f
0u ΩB             (18)                       

where B is an operator which for each fΩ from O  uniquely 

determines the displacement field u  (in our case, this is the 

system of equations (1)). 

     The (19) problem may be formulated in terms of minimum 

Lagranigian. In order to ensure the correctness of this formula-

tion, additional constraints have to be applied. In our case, the 

constant volume of fibers is assumed. Hence, the admissible 

set is defined as 

  , meas ;{ f CO  ΩΩ the fiber fully lays in the unit cell}                   

where C is the fiber area ratio. 

     It remains to state the shape parameters p  identifying the 

change of the boundary of fiber. A natural choice is a move-

ment of the boundary CΓ . The Lagrangian involving the side 

condition using the Lagrangian multiplier is written as: 
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owing to Hill's energy condition (4). Coefficient λ  is the La-

grangian multiplier. Substituting (5) to (20) gives: 
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and only the concentration factors are dependant of the vector 

p . 

     Let us suppose that f
αβklA is very precisely determined by 

the procedure described in section III. Hence, using (5), (17) 

and (18), (21) will be simplified as: 
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     Our aim will now be to formulate the domain 
fΩ by means 

of its corresponding boundary. This can be done in many 

ways. For example, suppose that the shape of the fiber under 

study is a polygon. One can choose some fixed point P (pole - 

in our case this is the origin of the coordinate system) and 

connect it with each vertex of this polygonal boundary. In this 

way we obtain N triangles Tk, k = 1,...,N , where N + 1 is the 

number of vertices. Since 
fΩ

Ωd = meas fΩ , meas fΩ  is: 

meas fΩ  = 


N

k

kT
1

 meas                              (22)                          

where meas fΩ or meas kT stands for the measure of  fΩ  or 

algebraic measure of kT , respectively.  

      The situation is described in Fig. 2. In order to determine 

the area of the domain, it is easy to calculate the area of one 

arbitrary triangle kT .  

     One rule has to be obeyed: the first vertex is the pole, the 

second vertex and the third have to hold the order of nodal 

points on the boundary of the domain, in our case the order of 

points is anticlockwise. Hence, the triangles denoted in Fig. 2 

by thick line are added and that denoted by thin line are sub-

tracted.   

     The stationary requirement leads to differentiation of the 

functional by the shape (design) parameters sp  
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which can be rewritten as:  
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for each s =1,…,n  

 

      

Fig. 2: Calculation of the area of domain fΩ  

 

     If  ps, s = 1,...,n is claimed as the distances of the origin 

from the current boundary of the fiber, Es corresponds to the 

strain energy density at the point of the interfacial boundary, 

in our case at the nodal point sξ . The equation (24) requires 

Es to have the same value for any s. In other words, if the 

strain energy density were the same at any point on the "mov-

ing" part of the boundary, the optimal shape of the trial body 

would be reached. For this reason, the body of the structure 

should increase its area (in 3D its volume) at the nodal point 

sξ  of the boundary, if Es is larger than the true value of λ- , 
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while it should decrease its value when Es is smaller than the 

correct λ- . As, most probably, we will not know the real value 

λ-  in advance; we estimate it from the average of the current 

values at the nodal points. 

     Since Es, prove large differences in their values, logarith-

mic scale was proposed by Tada, Seguchi and Soh, [5]. The 

computational procedure follows this idea. 

     Differentiating by λ  completes the system of Euler's equa-

tions: 




n

s 1

meas Ts = C                                (26) 

Unit cell is considered with various fiber volume ratios. Since 

we compare energy densities at nodal points of the interfacial 

boundary, the relative energy density may be regarded as the 

comparative quantity influencing the movement of the bound-

ary CΓ . As said in the previous section, the higher value of 

this energy, the larger movement of the nodal point of CΓ  

should aim at the optimum. The process of iterations will end 

if the Euclidean distance between current and previous ener-

gies be less then given admissible error.  

     In the following examples various combinations of stiff-

nesses of fiber and matrix is contemplated. Denote 

by f
f  meas Ωc the area fraction of fiber and 

by m
m  meas Ωc  the area fraction of matrix. One phase pos-

sesses the material properties: Modulus of elasticity of fi-

ber fE = 210000 kN/ 2m and that of matrix mE = 180000 

kN/ 2m , while Poisson’s ratio of fiber fν =0.18 and mν = 0.3 

is Poisson’s ratio of matrix.  

     In the first numerical test it is: %40f c , %60m c , and 

the relative error is 3.8e-04 after twenty seven iterations using 

the step of iteration 0.1. The result is depicted in Fig. 3. In Fig. 

4 the area ratios are as %60f c , %40m c  and the relative 

error is 3.3e-04 after thirty iterations using the step of iteration 

0.1. The previous cases have not required respecting any re-

strictions on the length of beams.  

     In the last examples the same area fractions are accepted as 

in the first case (results in Fig. 5) and in the second case (Fig. 

6), but the material properties are interchanged, the fiber is 

weaker than matrix. The approach have to involve the local 

iteration, as the beams are bounded by 0.05 from the external 

boundary Ω . The relative error is in the first case equal to 

2.57e-03 after thirty five iterations using the step of iteration 

0.1. The result is seen in Fig. 5. Fig. 6 shows the results from 

the same constellation as before (weak matrix, fiber and ma-

trix area ratios interchanged, bounded beams requiring the 

local iteration). The error is 2.51e-2 after thirty six iterations. 

 

         
 

Fig. 3:       First case                      Fig. 4:        Second case 

 

 

       
 

Fig. 5:       First case                            Fig. 6:        Second case 

     The results show certain shapes of fibers which can be used 

in practice. The last case only shows possible direction on how 

to construct fiber, and while the previous cases are quite rea-

sonable the last case is more or less scholar.  
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