
A Complete Tool-Chain for Developing and
TestingWSNApplications with FLEXOR

Kamini Garg†, Anna Förster†,Daniele Puccinelli†,Tiziano Leidi‡ and Silvia Giordano†
†Networking Laboratory, ISIN-DTI, University of Applied Sciences of Southern Switzerland

‡ICIMSI,DTI,University of Applied Sciences of Southern Switzerland
{kamini.garg,anna.foerster,daniele.puccinelli,tiziano.leidi, silvia.giordano}@supsi.ch

Abstract—In this paper, we present the complete tool-chainfor

FLEXOR, a sustainable and platform independent
softwarearchitecture that is optimized to support the
implementation,rapid prototyping, evaluation, and testing of
wireless sensornetwork applications.

Keywords—Wireless SensorNetworks, Architecture, Tool

 I.INTRODUCTION

The proper definition of efficient software architectures for
Wireless Sensor Networks (WSNs) is instrumental to code
reusability across different platforms, rapid prototyping,
hassle-free deployment, and the overall user friendliness of the
development process. Many key challenges of WSNs have
already been addressed with various degrees of success, but a
significant number of valid solutions have not had the broad
impact they deserve. To mitigate this problem, we advocate
for a sustainable, modular, and flexible software architecture
that intrinsically promotes cross-platform code reuse and fast
prototyping and enables the remote control and selective
activation of specific modules on individual nodes at run time.
In this paper we present the complete tool-chain for FLEXOR,
a platform-independent software architecture for the rapid
prototyping, development and testing of WSNs.The FLEXOR
software architecture and its tool-chain was developed
according to the following requirements:

• Standard programming language
• Platform independence
• High level of modularization
• Remote function invocation support
• Remote component exchange without reboot
• Graphical support for programming, debugging

and deployment

The remainder of this paper is organized as follows: Section II
presents the overall structure and short overview ofFLEXOR.
Section III presents the complete development anddeployment
tool chain for FLEXOR, consisting of visual editors,
codegenerators, and the run-time FLEXOR
Commander.Section IV puts our work in context and
compares it to otherrelevant efforts in the community. Finally,
Section V discussesthe potential of FLEXOR and its possible
applications tovarious challenges in WSNs. Finally Section VI
concludes thepaper.

II. FLEXOR SYSTEM ARCHITECTURE

ThemaingoaloftheFLEXORsoftwarearchitectureis
tosupportmodularization,remotecallbackinvocation,remote
nodemanagement,andplatformindependence. Theoverall
structureof FLEXORispresentedinFigure1.Themain
componentsofFLEXORaredescribedasfollows:

Fig.1.FLEXORoverallstructure.

A. FLEXOR Interface

FLEXORinterfaceisthemaincomponent thatenablesthe
platform-independentimplementationofdifferentmodulesand
alignsdifferentoperatingsystems,platforms, andevennet- work
simulatorstothesameWSN-specificinterface.Currently
wehaveimplementedthis FLEXORinterfacefortheTinyOS
operatingsystemandtheOMNeT++Simulator.

Fig.2.FLEXOR b as i c modu le a rch e t yp e .

B. FLEXOR Module

A FLEXOR moduleis the basicbuilding blockfor all
applicationsdevelopedin FLEXOR.Figure2presents their
basicminimalstructure. Thebasicarchetype ofaFLEXOR
moduleconsistsof7interfacefunctions: init,start,stop,

Proc. of the International Conference on Pervasive Computing and Communication (PCC)
Editor In Chief Dr. R. K. Singh.
Copyright © 2012 Universal Association of Computer and Electronics Engineers. All rights reserved.
ISBN: 978-981-07-2579-2 doi:10.3850/978-981-07-2579-2 PCC-275

53

Proc. of the International Conference on Pervasive Computing and Communication (PCC)

fromUp,fromDown,toUp,toDown.

C. FLEXOR Core

FLEXORCoreconsistsofCallback Man
andModuleManager.ThePacketPoolisacentralc
FLEXOR andservesseveralgo
controloverthenumberofmessagescurrentlypro
system, thus preventing memory overf
backManager takescareofremotefunction
TheModuleManageristhemostimportantcompo
FLEXOR.It is theonlycomponentinFLEXOR
the modulescurrentlyloadedintothe sys
organization.Itcanalsochangethisorganizationa

D. FLEXOR Specifications and Images

Specifications consistofa setofmodulesa
nectionsintoastack.Thestackcanbetraditional
butalsotwo-dimensional,depending ontheu
andonthemodulearchetypes used.Severalspeci
existonthesamenodeatrun-time, butonlyonesin
canbeactiveatanygiventime.Asetofco-
specificationsresiding together in the
asinglenodeiscalledanimage.Examplesoftwoim
arepresentedinFigure3.Themodulemanagertak
exchangingspecificationsonruntimeasaconsequ
aninternal or external command(callbac
informationregarding FLEXORarchitecture, p

Fig.3 .FLEXORsp ec i f i ca t i on and i ma ge

III. FLEXOR TOOL-CHAIN

The FLEXOR development environment
velopment tools for prototyping, refining, a
sensor network applications based on the
ware architecture. The FLEXOR environme
into the Eclipse development platform [www
combines a visual domain-specific language
source code generators and functionalities to
and implementation of sensor network applic
is based on the Eclipse infrastructure for
code generation [www.eclipse.org/modeling],
ble with all the Eclipse plug-ins for C and C
[www.eclipse.org/cdt]. Furthermore, we
FLEXORCommander that is able to send cal

nager,PacketPool
compo- nentin
oals.Itenablesfull
cessedin the
flows.The Call-

callmechanism.
onent of
Rthatis aware of
stemand their
atrun-time.

andtheirintercon-
andlinear,

userrequirements
ificationscan co-

ngle specification
existing

memory of
mages
escare of
uence of
ck). Forfurther
leasereferto [5].

examp les .

N

 consists of de-
and customizing
 FLEXOR soft-

ent is integrated
w.eclipse.org] and

(DSL)[7] with C
assist the design
ations. FLEXOR
r modeling and
, and is compati-

C++ development
e provide a
llback commands

to any node in the network an
information from serially connected

The FLEXOR development
onmodel-driven generative progr
Devel- opers may design applicatio
language and generate the imp
corresponding application directly f
architecture. Developers may then
the application, like processing alg
means of round- trip development
to extract hand- made code from
integrate snippets in the abstract
Therefore, further code generations
the complete code of the applicatio
development process, from applicat
and optimization, is therefore sup
integrated and automated way (see f

Fig.4 .Developmen

The FLEXOR development environ
(see also figure 5):
• An abstraction (the model): it
architecture of FLEXOR elements
images) in an editable form. It f
constraints to combine these elem
instantiated during development an
the structure and behavior of develo
• Code generators: they transform
contained in the model instances
generated code implements the s
designed applications.
• Visual editors: they allow desig
access, and modify the abstract mo
the model, the editors provide the
Language (DSL) that represents
FLEXOR development environmen
• Support for model refactoring: it
of the model instances without mod
designed applications and streamlin
process.
Source code generation is used in F
development process and reduce the
applications. Production of the sou

nd to receive debugging
d nodes.

environment is based
amming techniques [10].
ons using a visual abstract
lementation code of the
from the designed software

program specific parts of
gorithms, directly in C. By
support, it is then possible

m the generated code and
design of the application.
will automatically produce

on. Coverage of the whole
tion design to its refinement
ported by the tools, in an
figure 4).

nt Process.

nment is composed of

provides the high-level
(e.g. modules, specs and

further provides rules and
ments. Model elements are

nd further used to design
oped applications.

m the abstract information
into C source code. The
tructure and behavior of

gners to easily instantiate,
odel elements. Jointly with
e visual Domain- Specific

the centerpiece of the
nt.
t enables the modification
difying the behavior of the
nes the whole development

FLEXOR to streamline the
e risk of structural bugs in
urce code and integration

54

Proc. of the International Conference on Pervasive Computing and Communication (PCC)

with the FLEXOR runtime is automated, c
ducing the development complexity. Furtherm
code of modules and specs is produced sy
avoid inconsistencies and programming
generation, the description of each module an
is validated against the presence of possible d
This functionality further increases the rob
developed applications.

Fig.5 .Structure of the FLEXOR enviro

A. FLEXOR abstract model

The FLEXOR abstract model features the follo
model elements (see also Section II):

• Module: it provides the information
external parts of a module. The
enables the addition of input and output a
the module uses to communicate w
modules. Any number of inputs and
added. To ease the design of modules,
specify an FLEXOR module, whose prop
and may be extended by the module. FLE
light-weight form of programming inhe
through encapsulation of STRUCTS that
customization of common module designs

• Module Implementation: it contains the a
tion of the internal parts of a module. Fo
is possible to specify a module implem
encapsulates all the source code snippe
associated with input and output access
tialization of functions, module callbacks

• Specification: it allows the combination o
ules into module stacks, by connecting
gates.

• Image: it provides a way to aggregate
specification into an application, which m
on sensor nodes.

Further model elements are available in the FL
model for payloads and callbacks. They m
specify code identifiers and special purpose
For each model element a visual editor or
availablein the FLEXOR development enviro
editor is provided for modules and specifica
5). A form editor is provided for module impl
images, which mostly store information in t
or as references to other model elements.

consequently re-
more, the source
ystematically to
errors. Before

nd specification
design mistakes.
bustness of the

onment.

owing main

describing the
 module editor

access points that
with the other
outputs may be
, it is possible to
perties are reused
EXOR types are a
eritance, enabled
allows reuse and
s.
abstract informa-
or each module it
mentation, which
ets for functions
s points, for ini-
and payloads.

of different mod-
input and output

e more than one
may be deployed

LEXOR abstract
may be used to
e state variables.
a form editor is

onment. A visual
ations (see figure
lementations and
the form of text

Fig.6 .FLEXOR graphical

B. Code generators and generated

FLEXORsourcecodegenerators
modelelementsandproduceCsourcef
formatransformation froman
programminglanguage,bycustomizin
warearchitectureforeachspecific
theFLEXORdevelopmentenvironm
isgenerated:
• Source files are generated

associated module implementa
STRUCT containing all the i
the module and pointer to func
gates used for inter-m
Thegenerated source files fur
functions used to set default v
and to properly install the requi

• For each specification, a sourc
containing the STRUCTS of
specification is generated. Init
allow different modules to
available. Such functions are u
involved function pointers on c

• For each image a source f
containing the STRUCTS
specifications is generated. Fu
initialize and configure the
produced.

Generated source code files ex
basicfunctionality provided by
Furthermore, all needed c
specifications, payloads, callbacks
system to be compiled au- tomatica
the user-friendliness of FLEXOR.

l user interface.

d code

queryFLEXORabstract
files. Generatorsper-
nabstractDSLtoastructured
ng theFLEXORsoft-

applicationdesignedwith
ment.Thefollowingcode

for each module and
ation, which defines a C
internal state variables of
ctions for input and output
module communication.
rther contain initialization
values of the internal state
ired function pointers.
ce file with a C STRUCT

all modules used in the
tialization functions that
 communicate are also
sed to properly install the

connected modules.
file with a C STRUCT

of all the required
rthermore, source code to
generated application is

tend and specialize the
the FLEXOR core.

components (modules,
s) are included into the
lly, thus increasing further

55

Proc. of the International Conference on Pervasive Computing and Communication (PCC)

Fig.7 . FLEXOR commander enables the end user to interact with
any node in the deployed network.

C. FLEXOR Commander

As a final component of our FLEXOR tool-chain we
present the FLEXOR interaction server, see Figure7. This
GUI-supported tool enables the end user of the sensornet
deployment to communicate to the nodes in the network via
callbacks. Here, the user can send FLEXOR packets via serial
port to one or more serially connected nodes, which then
forward the callback to its final destination. The server also
displays debugging information from serially connected nodes
and can flash them with new code.

Fig. 8 . Screenshot of FLEXOR on OMNET++ Simulator.

D. FLEXOR on OMNET++ Simulator

In order to validate and verify the WSN applications, we
have also ported FLEXOR on OMNET++ platform. Porting
FLEXOR on OMNET++ platform helps the developers to
debug their applications before real deployment. Therefore
after validation and error correction of a WSN application, the
code is linked to a real hardware platform such as TinyOS that
is already implemented for FLEXOR. Figure 8 depicts the
sample working of FLEXOR on OMNET++ platform.

IV. RELATED WORKS

In this section, we contextualize FLEXOR with respect to
other related efforts in the WSN community. In essence,

FLEXOR combines the best practices and ideas into a single
architecture at the price of a low overhead.

A. Software architectures
The importance of a sustainable WSN architecture is often
emphasized in the literature [3]. Merlin et al. [9] have recently
identified a set of properties that need to be supported by
WSN software architectures: modularity, universality, event
notification, service support, and information propagation.

In terms of modularity, universality, and flexibility, X-Lisa,
SNA, Chameleon, and FLEXOR have very similar properties,
even if the details are different. However, FLEXOR offers the
most flexibility, as it allows for any number and order of
modules in its stack and even for two-dimensional stacks.
Chameleon’s [4] architecture is very modular due to its use of
Rime, a lightweight layered communication stack for sensor
networks that implements different communication primitives
(e.g. over 802.15.4, IP, etc.), but it fails to enforce any
modularization at the application level. FLEXOR, on the
other hand, enforces modularization at all levels and imple-
ments services and functions only at the medium access layer
(one-hop unreliable broadcast) along with platform-abstraction
functionalities.

B. Virtual machines, code distributions and remote control
Traditional virtual machines like Darjeeling [1] or Mate [8]

have different goals, as they do not aim to provide a
sustainable architecture for WSNs. Although their main goal is
the re- programming of motes after deployment, they only
enable the full exchange of the complete code at a node, as
opposed to partial exchanges. However, they do not enable
modulariza- tion, re-usability of code, or very low-overhead
runtime soft- ware management. Additionally, they do not
enable software management from inside the network: e.g., a
node may not drive its own software components or the ones
of its neighbors.

C. Graphical user interfaces and development enviornments
Various languages and modeling environments have been also
proposed for specific operating systems, mainly for TinyOS.
DSN [2], a declarative language for WSNs, or the Gratis [11]:
modeling environment, are such examples. How- ever, while
usually offering a higher level of abstraction and a more user-
friendly implementation environment, they are not targeted
towards code reuse, modularization or software component
management.

V. THE POTENTIAL OF FLEXOR

FLEXOR can be used in many different applications and
deployments. We have already applied FLEXOR to the im-
plementation of various link layer and routing protocols, to the
collection and management of link level statistics from
infrastructure-less testbeds, and to the management of mobile
nodes in WSN testbeds. In the next paragraphs, we briefly
describe these implementations and also sketch some other
advanced applications and features of FLEXOR.
Mobile testbed nodes: Managing mobility in testbeds and
deployments is a major challenge, as nodes typically rely on a
wired backchannel to receive new software, log data, etc. With

56

Proc. of the International Conference on Pervasive Computing and Communication (PCC)

FLEXOR, these features can be taken over by the callback
invocation and the run-time management of modules, as
described in Section II.
Link level traces: Link level traces represent an important
tool to boost the realism of simulation. It is critical to be able
to collect such traces not only from traditional backchannel-
based testbeds, such as MoteLab [13], but in any
environment, including outdoors. FLEXOR simplifies this task
by making it possible to easily send commands to the nodes,
change their behavior, and even collect the traces at a
centralized sink point without the use of a backchannel.
Evaluation of communication protocols and services:
Another typical task for WSN developers is to protocol or
service evaluation and benchmarking. Typically, protocols are
loaded and tested in a sequence. FLEXOR simplifies this task,
especially in a real-world deployment where backchannels are
not available. Callback invocation is used to easily exchange
protocols without affecting the state of the other protocols.
Fairness and visibility: Fairness is a major challengewhen
several protocols co-exist on the same node [6]. Pay- loads
coming from different modules are packed into the same
packet, thus minimizing the overall network traffic. The
extreme modularity of FLEXOR allows for better visibility of
the individual modules [12], as individual modules can be
clearly separated and their internal state and processes can be
logged.
Software rejuvenation:FLEXOR enables the long-
termmanagement of software modules, known as software
reju- venation [14]. Software rejuvenation can be easily
achieved with FLEXOR by using the module interface and its
main functions. Instead of rebooting a node and loosing its
complete state, all of the FLEXOR modules can be re-started
at any time and thus achieve rejuvenation of the existing state
or a different secure specification can be loaded to backup the
node state.
Local and remote debugging: FLEXOR can also beused
together with any platform-dependent and independent
debuggers, code inspections, and visualization mechanisms,
since it is entirely C-based. As discussed before, we also have
our FLEXOR Commander to do such a task.
Cross-layer support:FLEXOR allows a great deal offlexibility
in the definition and use of its module stack, as it enables
two-dimensional stacks as well as cross-layer communication.
This can be achieved in two different ways: adding new
inputs and outputs to the modules to connect non-
neighboring modules, and event notification, enabled via
callback invocation. This is a very important feature for
FLEXOR, as many WSN optimization techniques rely on
cross-layer communication and control.

VI. CONCLUSION

We have presented the design and complete tool-chain
ofFLEXOR, a modular and flexible software architecture
forthe rapid prototyping of WSNs. FLEXOR lowers the
barriers to entry into the traditionally challenging WSN
development process by offering a platform-independent
software archi- tecture as well as a user-friendly programming
environment and toolchain. FLEXOR represents an orthogonal

effort with widely used WSN operating systems such as
TinyOS and Contiki. FLEXOR can also be viewed as a
framework for the integration of advanced debugging
techniques such as passive in-field inspection of WSNs.
FLEXOR has the potential to streamline WSN development
by encouraging code reuse. As part of our follow-up work, we
plan to implement a large number of components to enrich
FLEXOR’s basic set of modules.

REFERENCES
[1] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, a feature-rich

vm for the resource poor. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, SenSys’09, pages 169–182,
Berkeley, California, 2009. ACM.

[2] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker,
and I. Stoica. The design and implementation of a declarative sensor
network system. In Proceedings of the 5th international conference on
Embedded networked sensor systems, SenSys ’07, pages 175–188,
Sydney, Australia, 2007. ACM.

[3] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S.
Shenker, I. Stoica, G. Tolle, and J. Zhao.Towards a sensor network
architecture: lowering the waistline. In Proceedings of the 10th
conference on Hot Topics in Operating Systems - Volume 10, pages 24–
24, Santa Fe, NM, 2005.

[4] A. Dunkels, F. O¨ sterlind, and Z. He. An adaptive communication
architecture for wireless sensor networks.In Proceedings of the5th
international conference on Embedded networked sensor
systems(SenSys), pages 335–349, New York, NY, USA, 2007. ACM.

[5] A. Förster, K. Garg, D. Puccinelli, and S. Giordano. Flexor: User
friendly wireless sensor network development and deployment. In
Proceedings of the 13th IEEEInternational Symposium on a World of
Wireless, Mobile and Multimedia Networks, San Francisco, CA, USA,
2012.

[6] J. Il Choi, M. Kazandjieva, M. Jain, and P. Levis. The case for a network
protocol isolation layer. In Proceedings of the 6th ACM conference on
Embedded network sensor systems (SenSys), Berkeley, CA, USA, 2009.

[7] I. Kurtev, J. Be´zivin, F. Jouault, and P. Valduriez. Model-based dsl
frameworks. In Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications,
OOPSLA ’06, pages 602–616, Portland, Oregon, USA, 2006. ACM.

[8] P. Levis and D. E. Culler. Mate: A virtual machine for tiny networked
sensors. In Proceedings of the ACM Conference on Architectural
Support for Programming Languages and Operating Systems, 2002.

[9] C. J. Merlin, C.-H. Feng, and W. B. Heinzelman. Information-sharing
protocol architectures for sensor networks: the state of the art and a new
solution. SIGMOBILE Mobile Computation and Communication
Revue,13:26–38, March 2010.

[10] B. Selic. The pragmatics of model-driven development. IEEE Software,

20(5):19 – 25, Sep-Oct 2003.

[11] P. Vo¨ lgyesi, M. Maro´ ti, S. Do´ ra, E. Osses, and A. Le´deczi.
Software composition and verification for sensor networks. Science of
Computer Programming, 56:191–210, April 2005.

[12] M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen, M. Jain, and P.
Levis. Visibility: a new metric for protocol design. In Proceedings of the
5th international conference on Embedded networked sensor systems
(SenSys), SenSys ’07, pages 73–86, Sydney, Australia, 2007.

[13] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: a wireless
sensor network testbed. In Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Networks (IPSN), pages
483–488, April 2005.

[14] M. Woehrle, A. Meier, and K. Langendoen. On the potential of
software rejuvenation for long-running sensor network deployments. In
Proceedings of the 1st International Workshop on Software Engineering
for Sensor Networks (SESENA), Cape Town, South Africa, 2010.

57

