
11

A Fast Bioinformatics Approach for Solving
Backtracking of DNA Sequence Evolution

in One Dimensional Cellular Automata
Michael Shan-Hui Ho, Paul Pin-Shuo Huang, Kun-Yu Hung, Kevin Kai-Wen Cheng, and Elizabeth Hsin-Yu Li

Abstract—It is a well-known fact that the DNA

mutation plays a very important role in DNA sequence evolution.
The backtracking problem of DNA sequence evolution in one
dimensional cellular automata (CA) has ben recognized as a NP
problem. In this research, a newly developed bioinformatics
approach constructs a DNA sequence evolution model in using
one dimensional cellular automata. Its corresponding
backtracking of DNA sequence evolution is accomplished by an
order-finding bioinformatics algorithm for efficient operations.
The time complexity of a proposed bioinformatics approach for
DNA sequence evolution in one dimensional cellular automata is
found in O(n2) polynomial bound. Our newly developed
algorithms for solving backtracking of DNA sequence evolution
in one dimensional CA are also in O(n2) polynomial bound.

Keywords: DNA sequence evolution, DNA mutation,
Cellular Automata, Bioinformatics,Order-finding.

1 Introduction
DNA is the basic and necessary unit for any creature on

earth which records all of information about its characteristics,
lifestyle and genetic information. It lets all creatures adapt
various environments by evolution.

It is a well-known fact that the DNA mutation plays a
very important role in DNA sequence evolution. In this paper,
we construct a bioinformatics approach for DNA sequence
evolution in one dimensional cellular automata (CA) and
solve backtracking of DNA sequence evolution. It‘s important
to understand the origin or evolution steps of DNA sequences
which can help us to find or to backtrack their characteristics
or differences. By recognizing these features, we can clearly
find some DNA changes or mutations in creatures, normal
cells, or damaged cells.

2 DNA Sequence Evolution
 Knowledge of DNA sequences has become
indispensable for basic biological research, such as diagnostic,
biotechnology, forensic biology and biological systematic.
In DNA evolution, we define an evolution event is the same
as a change in state, which may occur in one or more cellular
automaton (CA) cells. Therefore, mutation is an evolution
event and it corresponds to cell state changes. The time

Michael Shan-Hui Ho
Department of Electrical Engineering, NTPU,
New Taipei City, Taiwan, ROC

Paul Pin-Shuo Huang
Department of Electrical Engineering, NTPU,
New Taipei City, Taiwan, ROC

Kun-Yu Hung

Department of Information Management, MCU
Taoyuan Country, Taiwan, ROC

Kevin Kai-Wen Cheng
Department of Electrical Engineering, NTPU,
New Taipei City, Taiwan, ROC

Elizabeth Hsin-Yu Li
Department of Electrical Engineering, NTPU,

New Taipei City, Taiwan, ROC

step in the CA evolution is the time interval between two CA
cell changes and, therefore, the time flow is not uniform.
 In this apporach, it is supposed that the state of each cell
has changed as a result of the effect of the states of its
neighbors. The new state of the ith cell at next time step
(generally the s+1 step) can be shown in Equation (1) [1]:

 ̂ (

)
In Equation (1), matrix , ̂, is a linear evolution rule matrix
shown in the following:

In equation (1) cell states are one of the four bases A,

C, T and G, which are represented by numbers of the
quaternary number system, which contains only four numbers,
i.e. 0, 1, 2 and 3. We represent the bases using the follwoing
numbers: A as 0, C as 1, T as 2, and G as 3.

For example, a very small DNA strand which at time t
has seven bases: { A, A, C, T, A, G, T }. This strand is
represented by the following numbers: {0, 0, 1, 2, 0, 3, 2}.
Suppose that this DNA strand evolves according to the

following evolution rule matrix: ̂=

[

]

 , =

[

]

In Equation (2), the CA state at the next time step is
calculated as follows:

 ̂
It is reminded that the additions are modulo 4.
The Caley‘s Table using modulo 4 additions is shown in
Table 1.

Table 1: Caley‘s Table using the modulo 4 additions

3 Backtracking of DNA Sequence
Evolution

If each cell has only on and off states, one dimensional
CA is simply from a initial configuration of width n cells
evolved to 2

n
 different configurations [2]. In this paper, given

a specific initial configuration of width n cells in one
dimensional cellular automaton, each DNA sequence

 Proc. of the Intl. Conf. on Advances In Bio-Informatics And Environmental Engineering - ICABEE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-019-4 doi: 10.15224/ 978-1-63248-019-4-03

12

evolution can have 4
n
 different configurations which are

responsible for processing all the computational basis states.
Next, it is demonstrated that using a modified Shor‘s order-
finding algorithm [3] to solve the backtracking problem of
DNA sequence evolution in one dimensional cellular
automata is implemented. Then, it is also proved that a
measurement on the answer for solving backtracking of DNA
sequence is the same as that of Shor‘s order-finding algorithm
or similar to that of the breaktrough of a RSA cryptosystem
[4].

4 DNA Manipulations
 DNA Manipulations are used in Adleman-Lipton model
shown inn this subsection. The DNA Model of computation
has eight biological operations shown in the following:
1. Extract. Given a tube P and a short single strand of DNA,

S, the operation produces two tubes +(P, S) and –(P, S),
where +(P, S) is all of the molecules of DNA in P which
contain S as a sub-strand and–(P, S) is all of the
molecules of DNA in P which do not contain S.

2. Merge. Given tubes P1 and P2, yield ∪(P1, P2), where
∪(P1, P2) = P1 ∪P2. This operation is used to pour two
tubes into one, without any change in the individual
strands.

3. Detect. Given a tube P, if P includes at least one DNA
molecule we have ‗yes‘, and if P contains no DNA
molecule we have ‗no‘.

4. Discard. Given a tube P, the operation discards P.
5. Amplify. Given a tube P, the operation, Amplify (P, P1,

P2), will produce two new tubes P1 and P2 so that P1, and
P2 are totally a copy of P (P1, and P2 are now identical)
and P becomes an empty tube.

6. Append. Given a tube P containing a short strand of
DNA, Z, and the operation will append A onto the end of
every strand in P.

7. Append-head. Given a tube P containing a short strand of
DNA, Z, and the operation will append A onto the head of
every strand in P.

8. Read. Given a tube P, the operation is used to describe a
single molecule, which is contained in tube P.

5 Basic Bioinformatics Circuitry
 We use logic truth tables to optimize and complete logic
bio-circuit operations that can construct most basic DNA
logic circuits. These DNA logic circuits (gates) gates are
AND, OR, XOR, etc.

5.1 AND Operation on Bioinformatics Computing
 The AND operation of a bit with two input Boolean
variables U and V generates a result of 1 or 0. The logic
circuitry of parallel AND on one-bit is shown in Figure 1. The
corresponding truth table of the one-bit AND is shown in
Table 2.

Table 2: The truth table of the one-bit AND
Input Output

Uk Vk ANDk = Uk ∧ Vk

0 0 0

0 1 0

1 0 0

1 1 1

Figure 1: Logic circuitry of parallel AND on one-bit

ParallelOneBitAND(T0, Uk, Vk, ANDk)

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1)

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1)
If (Detect(T2

U=1,V=1) = = ―yes‖) then
 Append-head(T2

U=1,V=1, ANDk
1) EndIf

If (Detect(T2
U=1,V=0) = = ―yes‖) then

 Append-head(T2
U=1,V=0, ANDk

0) EndIf
If (Detect(T2

U=0,V=1) = = ―yes‖) then
Append-head(T2

U=0,V=1, ANDk
0) EndIf

If (Detect(T2
U=0,V=0) = = ―yes‖) then

Append-head(T2
U=0,V=0, ANDk

0) EndIf

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)
EndAlgorithm

Figure 2: Parallel AND operation on one bit algorithm

5.2 OR Operation on Bioinformatics Computing
 The OR operation of a bit with two input Boolean
variables U and V produces a result of 1 or 0. The logic
circuitry of parallel OR on one-bit is shown in Figure 3. The
corresponding truth table of the one-bit OR is shown in Table
3.

Table 3: The truth table of the one-bit OR
Input Output

Uk Vk ORk = Uk Vk

0 0 0

0 1 1

1 0 1

1 1 1

Figure 3: Logic circuitry of parallel OR on one bit

ParallelOneBitOR(T0, Uk, Vk, ORk)

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1)

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1)
If (Detect(T2

U=1,V=1) = = ―yes‖) then
 Append-head(T2

U=1,V=1, ORk
1) EndIf

If (Detect(T2
U=1,V=0) = = ―yes‖) then

 Append-head(T2
U=1,V=0, ORk

1) EndIf
If (Detect(T2

U=0,V=1) = = ―yes‖) then
 Append-head(T2

U=0,V=1, ORk
1) EndIf

If (Detect(T2
U=0,V=0) = = ―yes‖) then

 Append-head(T2
U=0,V=0, ORk

0) EndIf
T0= ∪(T2

U=1,V=1, T2
U=1,V=0, T2

U=0,V=1, T2
U=0,V=0)

EndAlgorithm

Figure 4: Parallel OR operation on one bit algorithm

5.3 XOR Operation on Bioinformatics Computing
 The Exclusive-OR (XOR) operation of a bit with two
input Boolean variables U and V generates an output of 1 or
0. The logic circuitry of parallel XOR on one-bit is shown in
Figure 5. The corresponding truth table of the one-bit XOR is
shown in Table 4:

Table 4: The truth table of the one-bit XOR
Input Output

Uk Vk XORk = Uk Å Vk

0 0 0

0 1 1

1 0 1

1 1 0

Figure 5: Logic circuitry of Parallel XOR on one bit

ParallelOneBitXOR(T0, Uk, Vk, XORk)

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1)

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1)
If (Detect(T2

U=1,V=1) = = ―yes‖) then
 Append-head(T2

U=1,V=1, XORk
0) EndIf

If (Detect(T2
U=1,V=0) = = ―yes‖) then

 Proc. of the Intl. Conf. on Advances In Bio-Informatics And Environmental Engineering - ICABEE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-019-4 doi: 10.15224/ 978-1-63248-019-4-03

13

 Append-head(T2
U=1,V=0, XORk

1) EndIf
If (Detect(T2

U=0,V=1) = = ―yes‖) then
 Append-head(T2

U=0,V=1, XORk
1) EndIf

If (Detect(T2
U=0,V=0) = = ―yes‖) then

 Append-head(T2
U=0,V=0, XORk

0) EndIf

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0).
EndAlgorithm

Figure 6: Parallel XOR operation on one bit algorithm

5.4 Bio-Arithmetic Parallel Adder on One Bit
A one-bit adder has three inputs and two outputs. The

logic circuitry of parallel adder on one-bit is shown in Figure
7, and the truth table of the one-bit adder is shown in Table 5.

Table 5: The truth table of the one-bit adder

Figure7: Logic circuitry of parallel adder on one bit

Based upon the logic circuitry in Figure 7, we can derive the
bio-algorithm of parallel adder on one-bit in Figure 8.
ParallelOneBitAdder(T0, Uk , Vk, Ck)
ParallelOneBitXOR(T0, Uk,Vk, XORk)
ParallelOneBitXOR(T0, XORk, Ck , Sk)
ParallelOneBitAND(T0, Uk ,Vk , ANDk

1)
ParallelOneBitAND(T0, Ck ,Vk , ANDk

2)
ParallelOneBitAND(T0, Uk , Ck , ANDk

3)
ParallelOneBitOR(T0, ANDk

1, ANDk
2, ORk

1)
ParallelOneBitOR(T0, ORk

1, ANDk
3, ORk

2)

T1 = +(T0,

) and T2 = － (T0,

)

If(Detect(T1)==‖yes‖) then
Append-head (T1,Ck+1

1) EndIf
If(Detect(T2)==‖yes‖) then

Append-head (T2,Ck+1
0) EndIf

T0=∪(T1, T2)

EndAlgorithm

Figure 8: Parallel adder on one-bit algorithm

5.5 Bio-Arithmetic Parallel Adder on n Bits
In this section, we use the bio-arithmetic adder on one-bit

to construct the Parallel Adder in Figure 9.
ParallelAdder(T0, U, V, n)
Append(T0, C1

0)
For k=1 to n
 ParallelOneBitAdder(T0, Uk , Vk, Ck)
EndFor
EndAlgorithm

Figure 9: Parallel adder algorithm

5.6 Bio-Arithmetic Parallel Comparator on One
Bit
 The following algorithm is applied to compare the
stickers from tubes Ta and Tb. Tube T0

=
 is the first parameter

containing equal comparisons and to pass these equal
comparisons to algorithm Parallel Comparator (T0

EDGE_temp
,

T0
overlay

, Ta, Tb, m, n, g, b) in Figure 11. Algorithm for parallel
execution on a one bit comparison is shown in Figure 10.
OneBitComparator(T0

=, Ta , Tb , p ,d)
T1

1st_on= +(Ta,sp,1
1)and T1

 1st_off= − (Ta,sp,1
1)

T2
2nd_on= +(Ta,sp,2

1) and T2
 2nd_off = − (Ta,sp,2

1)
T3

1st_on= +(Tb,sd,1
1) and T3

 1st_off= − (Tb,sd,1
1)

T4
 2nd_on= +(Tb,sd,2

1) and T4
2nd_off= − (Tb,sd,2

1)
If (Detect(T1

1st_on)=‗yes‘ and Detect(T3
1st_on)=‗yes‘) then

If(Detect(T2
2nd_on)=‗yes‘ and Detect(T4

2nd_on)=‗yes‘) then
T0

= = ∪(T0
=,T1

1st_on, T3
1st_on, T2

2nd_on,T4
2nd_on) EndIf EndIf

If (Detect(T1
1st_on) = ‗yes‘ and Detect(T3

1st_on) = ‗yes‘) then
If(Detect(T2

2nd_off)=‗yes‘ and Detect(T4
2nd_off)=‗yes‘) then

T0
= = ∪(T0

=,T1
1st_on, T3

1st_on, T2
 2nd_off,T4

 2nd_off) EndIf EndIf

If(Detect(T1
1st_off) = ‗yes‘ and Detect(T3

1st_off) = ‗yes‘) then
If(Detect(T2

2nd_on)=‗yes‘ and Detect(T4
2nd_on)=‗yes‘) then

T0
= = ∪(T0

=,T1
1st_off, T3

1st_off, T2
2nd_on,T4

 2nd_on) EndIf EndIf

If(Detect(T1
1st_off) = ‗yes‘ and Detect(T3

 1st_off) = ‗yes‘) then
If(Detect(T2

2nd_off)=‗yes‘ and Detect(T4
2nd_off)=‗yes‘) then

T0
= = ∪(T0

=,T1
 1st_off, T3

 1st_off, T2
 2nd_off,T4

 2nd_off) EndIf EndIf

EndAlgorithm

Figure 10: Parallel comparator on one bit

5.7 Bio-arithmetic Parallel Comparator on n Bits
 The following algorithm, ParallelComparator (T0, T0

overlay, Ta, Tb, m, n, g, b), is an n-bit comparator. Parallel
execution on n bit comparisons is shown in Figure 11.

ParallelComparator(T0, T0
overlay , Ta , Tb , m, n, g, b)

For d =0 to Min(n-m,b-g)
For p=n downto m

OneBitComparator(T0
=, Ta, Tb, p, g+d)

If (Detect(T0
=)=―yes‖) then

Append(T0
overlay,Op,g+d

 1)
Discard(T0

=) EndIf
EndFor

EndFor
If (Detect(T0

overlay)=―yes‖) then
T0=∪(T0, T0

overlay) EndIf
Discard(T0

overlay)
EndAlgorithm

Figure 11: parallel comparator om n bits

6 Proposed A Fast Bioinformatics
Approach for Solving Backtracking of

DNA Sequence Evolution in One
Dimensional Cellular Automata

In this research, the entire bioinformatics approach for
solving backtracking of DNA sequence evolution in one
dimensional cellular automata is accomplished by algorithms I
and II. They are DNA sequemce evolution in one
dimensional automata and backtracking of DNA sequence
evolution repectively.

Algorithm :SolvingCAModelforDNAEvolutionBacktracking
(a)Algorithm I : DNASequemceEvolutionInOneDimentionalCA
(b)Algorithm II: BacktrackingofDNASequenceEvolution

ENDAlgorithm

Figure 12: Proposed algorithms to Construct and backtracking
of DNA Sequence Evolution in one dimensional CA.

6.1 Proposed Bioinformatics Algorithms to
Construct DNA Sequence Evolution

Based on each evolved procedure, the inputs are the
rule matrix and the CA status in the previous evolution step.
Once we get the newest status for the current step, record it
and proceed to the next step until the last step f is completed.

In algorithm I, there are several procedures proposed
to solve the construction of the DNA sequence evolution
model in one dimensional cellular automata.
(a)Algorithm I: DNASequemceEvolutionInOneDimensionalCA

For cellular automaton step=0 to f

(a1) ConstructRuleMatrix (

)

(a2) InputCAStatus(

)

(a3) ExecuteCAStatus(

)

 Proc. of the Intl. Conf. on Advances In Bio-Informatics And Environmental Engineering - ICABEE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-019-4 doi: 10.15224/ 978-1-63248-019-4-03

14

(a4) SaveCAStatus(

,

)

 EndFor
EndAlgorithm

Figure 15: Algorithms to backtracking of DNA sequence
evolution in one dimensional cellular automata.

6.1.1 One Dimensional Cellular Automata
Cellular automata were proposed by von Neumann and

Ulam. Any system with many identical discrete elements
undergoing deterministic local interactions may be modeled as
cellular automata.

Cellular automaton usually has several grids of elements
which each has the finite number of states, such as ―on‖ or
―off‖, ―has something‖ or nothing. The number of grids can
be any finite number or dimensions for the need of any
researchers. Therefore, the presentation example of the one
dimensional cellular automaton can be shown in Figure 12:

Figure 12: Example of one dimensional cellular automaton

Suppose that the initial configuration of the one
dimensional cellular automaton is shown in Figure 12. Using
rule 90 [2] on the initial configuration, the five following
continous steps in Figures (a) to (e) for the one dimensional
cellular automaton evolution are shown in Figure 13.

Figure 13: The five results of the one dimensional cellular

automaton evolved from Figure 12.

6.1.2 Construction of DNA Sequence Evolution
Figure 14 shows the construction of rule matrix.

Suppose that DNA sequence is n bit length, and the width of
each one dimensional cellular automaton is n. The following
algorithm constructs the rule matrix, which the matrix is n*n.
Procedure ConstructRuleMatrix(

)
(1)For i =0 to n-1

(1a) For j =0 to n-1

 (1aa) Append (
 ,).

EndFor
EndFor

EndProcedure

Figure 14: Construction of the rule matrix.

Figure 15: Example of rule matrix constructed by Figure 13
Figure 16 shows the CA status used for the next

configuration. Suppose that DNA sequence is n bit length, and
the width of next one dimensional cellular automaton is n.

Procedure InputCAStatus (

)

(1)Discard(

)

(2)If cellular automaton step=0

 (2a)Append(

)

 Else

 (2b)Append(

)

EndProcedure

Figure 16: CA status for the next configuration

Figure 17: CA status outcomes generated from Figure 16.

The next status of one-dimensional cellular automaton
for the newest configuration can be used in Figure 18.
Procedure ExecuteCAStatus (

)

 (1)Discard(

)
 (2) For i = 0 to n-1
 (2a)For j= 0 to n-1

 (2aa)Discard(
)

 (2ab)Discard(
)

(2ac)ParallelMultiplier(
 , U,V,

 ,

)

 (2ad)ParallelAdder(
 ,

 ,
)

 EndFor

 (2b)Append(

)

EndFor
EndProcedure

Figure 18: Execution of one dimensional cellular automaton.

Figure 19: Execution example of Figure 18.
The result of one dimensional cellular automaton

new status for a new configuration is stored in Figure 20.
Procedure SaveCAStatus(

,

)

(1)Append(

,

)

EndProcedure

Figure 20: Storage to record one dimensional CA new status.

Figure 21: one dimensional CA status recorded in Figure 20.

After storing our newest status of CA, then proceed to
next CA step and back to procedure (a1) in Algorithm I for
the next step execution until all step executions are completed.
The Figure22 shows the CA status after five step executions
are completed.

Figure 22: Example of one dimensional cellular automaton
status after five step executions are completed.

6.2 Proposed Bioinformatics Algorithms for
Backtracking of DNA Sequence Evolution
Based on the evolved rule, each configuration of width

n in one dimensional cellular automaton evolves to its next
CA status. As the section 3 mentioned, the order finding
problem can be identified as finding the order of one of the
prime factor for an integer.

In algorithm II, we proposed several procedures shown in
Figure 23 to solve the backtracking of the DNA sequence
evolution in one dimensional CA.
(b)Algorithm II: BacktrackingofDNASequenceEvolution

 Proc. of the Intl. Conf. on Advances In Bio-Informatics And Environmental Engineering - ICABEE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-019-4 doi: 10.15224/ 978-1-63248-019-4-03

15

(b1) CreateSolutionspace()
(b2) CalculategcdforSolutionSpace(…)

(b3) CalculateModforSolutionSpace
(…)

(b4)JudgeorderforSolutionSpace
(…)
 EndAlgorithm

Figure 23: Algorithms for solving backtracking of the DNA
sequence evolution in one dimensional CA.

6.2.1 Order-Finding
 The backtracking of the tumor growth in reversible

one dimensional cellular automaton is used to find out its
final configuration that can be evolved to a specific or initial

configuration. Suppose a function, θ: {x|0  x  4
n
  1} 

{y|0  y  4
m
  1}, is called a one way function. Lemma 1

shows that a reversible one dimensional cellular automaton is
a one way function so that one dimensional cellular automaton
is an one to one relationship. Hence, order finding can be used
to solve backtrcking of one dimensional cellular automaton.
 Lemma 1: A reversible one dimensional cellular automaton
is a one way function.

Suppose that if a, b, and N are integers with N ≥ 1 and
 . Then we let ZN denote the set ZN = {0,…,N-
1}.If in addition N is prime, then ZN forms a field. We write

to denote the following set :

 { ∈ 𝑍 : gc }

For any element ∈
 there exists a unique element ∈

that satisfies

Now, for a given element ∈

 , the order of a in

 (or the order of a modulo N) is the smallest positive integer

r of n =⌈ g ⌉ bits such that

and 0  r  4
n
  1. Assume that a system has 4

n
 possible

configurations in which it includes the first function F: {k|0 

k  4
n
  1}  {0, 1}, and the second function

G: {k|0  k  4
n
  1}  { }

 The relationships between functions F and G are shown in
Table 5. In a one dimensional cellular automaton with n cells,

its evolved function isθ: {k|0  k  4
n
  1}  {v|0  v  4

m
 

1}, where {k|0  k  4
n
  1} is a set of all of the initial

configurations and {v|0  v 4
m
  1} is a set of all of the

evolved configurations. If function F finds the corresponding

initial configuration k for v = θ (k), then F(k)  {1}.

Otherwise, F(k)  {0}.
Table 5: A relation of degree 2, R.

6.2.2 Backtracking of DNA Sequence Evolution
Suppose that DNA sequence is n bit length, then

there are 4
n
 possible configurations. Procedure

CreateSolutionspace constructs the solution space of the group of
integer N, which we named as ZN and we denote the set ZN =

{0,…,N-1} is corresponding to n evolution steps of DNA
sequence in one dimensional CAthat is used for order finding.
Procedure CreateSolutionspace ()

(1)For f =0 to N-1

 (1a) Append (,).
EndFor

EndProcedure

Figure 24: Create the solution space for order finding

Figure 25:Example of creating the solution space

Based upon the one way function, suppose that“A” is an
integer and co-prime with integer ―N‖, and we let ZN denote

the set ZN = {0,…,N-1}, then any possible candidate ‖A‖ can

be defined as: { ∈ 𝑍 : gc } After procedure

CalculategcdforSolutionSpace filterates all possible
configurations, one possible solution can be found if
gc .

In order to compare the values of two tubes in order
finding, Function ParallelComparator is modified in the
following:
ParallelComparator(TR

=, TR
<, TR

>,TA ,TB, n)
(1) For k = n downto 1

(2) ParallelOneBitComparator (TC
=, TC

<, TC
> , TA ,TB)

(2a) If (Detect(TC
=) = = ―yes‖) then

TR
= = (TR

=, TC
=).

(2b) Else If (Detect(TC
<) = = ―yes‖) then

TR
< = (TR

<, TC
<).

(2c) Else If (Detect(TC
>) = = ―yes‖) then

TR
> = (TR

>, TC
>).

EndIf
EndFor

EndAlgorithm

Figure 26: Modified parallel comparator
Procedure CalculategcdforSolutionSpace
(…)

(1)Append()
(2)Append()

(3)For f=1 to N-1
(3a)Append (,)

(3b)Repeat
(3ba)ParallelComparator(

= ,
< ,

> , , n)

(3bb)If (Detect(
>)=‖Yes‖)

(3bba) ParallelSubtractor(, , , n)

Else
(3bbb) ParallelSubtractor(, , , n)

(3bc)ParallelComparator(
= ,

< ,
> ,

 , n)

(3bd)ParallelComparator(
= ,

< ,
> ,

 , n)

(3be)ParallelComparator(
= ,

< ,
> , ,

n)
(3bf)ParallelComparator(

= ,
< ,

> , ,

n)
 Until(Detect(

=)=‖Yes‖ || Detect(
=)=‖Yes‖ ||

Detect(
=)=‖Yes‖|| Detect(

=)=‖Yes‖)

(3c)If(Detect(
=)=‖Yes‖||Detect(

=)=‖Yes‖)

 (3ca)Discard()

Else
 (3cb)Discard()

(3cc)Append()
 (3d) Discard()

EndFor
EndProcedure

Figure 27: Calculation for the greatest common divisor

 Proc. of the Intl. Conf. on Advances In Bio-Informatics And Environmental Engineering - ICABEE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-019-4 doi: 10.15224/ 978-1-63248-019-4-03

16

Figure 28: Example of gc for filtration

Figure 28 shows using gc tofiltrate all
possible non-prime DNA sequences. In Figure 29, we can find
the exponent ―r‖ in the formula which satisfies
 . If the value of ―a‖ is not prime, then that value is
are filtrated. We expect that the value of is 1. In
order to find the value of ―r‖, the result of must be
equal to 1.
Procedure CalculateModforSolutionSpace
(…)

(1)For f = 0 to N-1
(1a)If (Detect()=‖No‖)

Terminate and go to the next loop
(1b)Append (,)

(1c)For k = 0 to 4n

(1ca) ParallelModular(, , ,n)

(1cb)ParallelComparator(
= ,

< ,
> ,

 , n)
(1cc)If(Detect(

>)
(1cca) ParallelMultiplier(, , , a, b)

(1ccb) ParallelAdder(, , 1, n)
(1ccc)Discard()

 Else if(Detect(
=)

 Terminate this loop
EndFor

(1d) Append-Head (,)

(1e)Discard()

EndFor

EndProcedure

Figure 29: Calculation for the Modulo Function
Once we find all of values of ―r‖ for the corresponding

group elements, the optimal solution ―r‖ is found, which
satisfies function: g g , where g .
Procedure JudgeorderforSolutionSpace
(...)

(1)For f=0 to N-1
(1a)If (Detect()=‖No‖)

Terminate and go to the next loop
 (1b)Append (,)

 (1c) +()

(1d) -()

 (1e)log(,)

(1f) ParallelMultiplier(, , , a, b)

(1g) ParallelModular(, , , n)

(1h)ParallelComparator(
= ,

< ,
> ,

 , n)

(1i)If (Detect(
=)=‖Yes‖)

(1ia)Append()

Else

(1ib) Discard()

(1ic) Discard()

(1id) Discard()

(1ie) Discard()

(1if) Discard()

EndFor
EndProcedure

Figure 30 : Backtracking algorithm after judgments for
all possible selections

Figure 31: Example of backtracking to the original

intial configuration after judgments for all possible selections.
Figure 31 shows number 0 to be the original intial

configuration after judgments for all possible selections by
using function: g g .

7 Complexity for Solving Backtracking of
DNA Sequence Evolution

(1) The time complexity of proposed optimal
bioinformatics algorithm (Algorithm I) to construct DNA
sequence evolution in one dimensional cellular automata is
found in O(n

2
) polynomial bound.

(2) The time complexity of proposed optimal
bioinformatics algorithm (Algorithm II) for the backtracking
of the DNA sequence evolution is in O(n

2
) polynomial bound.

8 Conclusion
It is a well-known fact that the DNA mutation plays

a very important role in DNA sequence evolution. The
Backtracking problem of DNA sequence evolution in one
dimensional cellular automaton has ben recognized as a NP
problem. In order to solve backtracking problem, a newly
developed optimal bioinformatics algorithm for solving a
backtracking of the DNA sequence evolution is proposed.
First, one dimensional cellular automaton is used to construct
a bioinformatics graphical DNA sequence evolution. Second,
a bioinformatic order-finding algortihm solves backtracking
of the DNA sequence evolution. With bioinformatics
computing which fully utilizing massive storage and parallel
computations, the construction of DNA sequence evolution
and its backtracking have become more efficient and more
faster.

9 References
[1] Ch. Mizas , G.Ch. Sirakoulis , V. Mardiris , I. Karafyllidis

, N. Glykos , R. Sandaltzopoulos(2008), ―Reconstruction
of DNA sequences using genetic algorithms and cellular
automata: Towards mutation prediction?‖, BioSystems
Vol.92, pp.61–68.

[2]Wolfram, Stephen (1983). "Statistical Mechanics of
Cellular Automata".Reviews of Modern Physics Michael
(Shan-Hui) Ho Vol.55/3, pp. 601–644.

[3] Shor P. W. (1994), ―Algorithm for quantum computation:
discrete logarithm and factoring algorithm.‖ Proceedings
of the 35th Annual IEEE Symposium on Foundation of
Computer Science :pp.124-134.

[4] Michael (Shan-Hui) Ho, W.L Chang, Minyi
Guo (2007), ―Application of Bio-molecular Computing to
Breakthrough in Cryptography.‖ Systems Bioinformatics :
An Engineering Case-Based Approach : pp.319-337.

 Proc. of the Intl. Conf. on Advances In Bio-Informatics And Environmental Engineering - ICABEE 2014.
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-019-4 doi: 10.15224/ 978-1-63248-019-4-03

http://en.wikipedia.org/wiki/Stephen_Wolfram
http://www.stephenwolfram.com/publications/articles/ca/83-statistical/
http://www.stephenwolfram.com/publications/articles/ca/83-statistical/
http://www.informatik.uni-trier.de/~ley/db/journals/tjs/tjs61.html#ChangLCWLGH12
http://www.informatik.uni-trier.de/~ley/db/journals/tjs/tjs61.html#ChangLCWLGH12

