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Abstract—It is a well-known fact that the DNA 

mutation plays a very important role in DNA sequence evolution. 
The backtracking problem of DNA sequence evolution in one 
dimensional cellular automata (CA) has ben recognized as a NP 
problem. In this research, a newly developed bioinformatics 
approach constructs a DNA sequence evolution model in using 
one dimensional cellular automata. Its corresponding 
backtracking of DNA sequence evolution is accomplished  by an 
order-finding bioinformatics algorithm for efficient  operations. 
The time complexity of a proposed bioinformatics approach for 
DNA sequence evolution in one dimensional cellular automata is 
found in O(n2) polynomial bound. Our newly developed 
algorithms for solving backtracking of DNA sequence evolution 
in one dimensional CA are also in O(n2) polynomial bound. 

Keywords: DNA sequence evolution, DNA mutation,  
Cellular Automata, Bioinformatics,Order-finding. 

1 Introduction 
DNA is the basic and necessary unit for any creature on 

earth which records all of information about its characteristics, 
lifestyle and genetic information. It lets all creatures adapt 
various environments by evolution.  

It is a well-known fact that the DNA mutation plays a 
very important role in DNA sequence evolution. In this paper, 
we construct a bioinformatics approach for DNA sequence 
evolution in one dimensional cellular automata (CA) and 
solve backtracking of DNA sequence evolution. It‘s important 
to understand the origin or evolution steps of DNA sequences 
which can help us to find or to backtrack their characteristics 
or differences. By recognizing these features, we can clearly 
find some DNA changes or mutations in creatures, normal 
cells, or damaged cells. 

2 DNA Sequence Evolution 
             Knowledge of DNA sequences has become 
indispensable for basic biological research, such as diagnostic, 
biotechnology, forensic biology and biological systematic.  
In  DNA evolution, we define an evolution event is the same 
as a change in state, which may occur in one or more cellular 
automaton (CA) cells. Therefore, mutation is an evolution 
event and it corresponds to cell state changes. The time 
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step in the CA evolution is the time interval between two CA 
cell changes and, therefore, the time flow is not uniform. 
          In this apporach, it is supposed that the state of each cell 
has changed as a result of the effect of the states of its 
neighbors. The new state of the ith cell at next time step 
(generally the s+1 step) can be shown in Equation (1) [1]: 
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In Equation (1), matrix , ̂, is a linear evolution rule matrix 
shown in the following: 

 

 
 

 
 

 
In equation (1) cell states are one of the four bases A, 

C, T and G, which are represented by numbers of the 
quaternary number system, which contains only four numbers, 
i.e. 0, 1, 2 and 3. We represent the bases using the follwoing 
numbers: A as 0, C as 1, T as 2, and G as 3. 

For example, a very small DNA strand which at time t 
has seven bases: { A, A, C, T, A, G, T }. This strand is 
represented by the following numbers: {0, 0, 1, 2, 0, 3, 2}. 
Suppose that this DNA strand evolves according to the 

following evolution rule matrix:   ̂=
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In Equation (2), the CA state at the next time step is 
calculated as follows: 

      ̂      
It is reminded that the additions are modulo 4.  
The Caley‘s Table using modulo 4 additions is shown in 
Table 1. 

Table 1: Caley‘s Table using the modulo 4 additions 

 

3 Backtracking of DNA Sequence 
Evolution 

If each cell has only on and off states, one dimensional 
CA is simply from a initial  configuration of width n cells 
evolved to 2

n
 different configurations [2]. In this paper, given 

a specific initial configuration of width n cells in one 
dimensional cellular automaton, each DNA sequence 
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evolution can have 4
n
 different configurations which are 

responsible for processing all the computational basis states. 
Next, it is demonstrated that using a modified Shor‘s order-
finding algorithm [3] to solve the backtracking problem of 
DNA sequence evolution in one dimensional cellular 
automata is implemented. Then, it is also proved that a 
measurement on the answer for solving backtracking of DNA 
sequence is the same as that of Shor‘s order-finding algorithm 
or similar to that of the breaktrough of a RSA cryptosystem 
[4]. 

4 DNA Manipulations 
 DNA Manipulations are used in Adleman-Lipton model 
shown inn this subsection. The DNA Model of computation 
has eight biological operations shown in the following: 
1. Extract. Given a tube P and a short single strand of DNA, 

S, the operation produces two tubes +(P, S) and –(P, S), 
where +(P, S) is all of the molecules of DNA in P which 
contain S as a sub-strand and–(P, S) is all of the 
molecules of DNA in P which do not contain S. 

2. Merge. Given tubes P1 and P2, yield ∪(P1, P2), where 
∪(P1, P2) = P1 ∪P2.  This operation is used to pour two 
tubes into one, without any change in the individual 
strands.    

3. Detect. Given a tube P, if P includes at least one DNA 
molecule we have ‗yes‘, and if P contains no DNA 
molecule we have ‗no‘. 

4. Discard. Given a tube P, the operation discards P. 
5. Amplify. Given a tube P, the operation, Amplify (P, P1, 

P2), will produce two new tubes P1 and P2 so that P1, and 
P2 are totally a copy of P (P1, and P2 are now identical) 
and P becomes an empty tube. 

6. Append. Given a tube P containing a short strand of 
DNA, Z, and the operation will append A onto the end of 
every strand in P. 

7. Append-head. Given a tube P containing a short strand of 
DNA, Z, and the operation will append A onto the head of 
every strand in P. 

8. Read. Given a tube P, the operation is used to describe a 
single molecule, which is contained in tube P.  

5 Basic Bioinformatics Circuitry 
 We use logic truth tables to optimize and complete logic 
bio-circuit operations that can construct most basic DNA 
logic circuits. These DNA logic circuits (gates) gates are 
AND, OR, XOR, etc. 

5.1 AND Operation on Bioinformatics Computing 
 The AND operation of a bit with two input Boolean 
variables U and V generates a result of 1 or 0. The logic 
circuitry of parallel AND on one-bit is shown in Figure 1. The 
corresponding truth table of the one-bit AND is shown in 
Table 2. 

Table 2: The truth table of the one-bit AND 
Input Output 

Uk Vk ANDk = Uk  ∧ Vk 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 
Figure 1: Logic circuitry of parallel AND on one-bit  

ParallelOneBitAND(T0, Uk, Vk, ANDk )  

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).  

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1) 

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1) 
If (Detect(T2

U=1,V=1) = = ―yes‖) then 
   Append-head(T2

U=1,V=1, ANDk
1)   EndIf  

If (Detect(T2
U=1,V=0) = = ―yes‖) then    

   Append-head(T2
U=1,V=0, ANDk

0)   EndIf  
If (Detect(T2

U=0,V=1) = = ―yes‖) then    
Append-head(T2

U=0,V=1, ANDk
0)   EndIf  

If (Detect(T2
U=0,V=0) = = ―yes‖) then   

Append-head(T2
U=0,V=0, ANDk

0)   EndIf  

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)  
EndAlgorithm  

Figure 2: Parallel AND operation on one bit algorithm 

5.2 OR Operation on Bioinformatics Computing 
 The OR operation of a bit with two input Boolean 
variables U and V produces a result of 1 or 0. The logic 
circuitry of parallel OR on one-bit is shown in Figure 3. The 
corresponding truth table of the one-bit OR is shown in Table 
3. 

Table 3: The truth table of the one-bit OR 
Input Output 

Uk Vk ORk = Uk    Vk 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 
Figure 3: Logic circuitry of parallel OR on one bit 

ParallelOneBitOR(T0, Uk, Vk, ORk)  

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).  

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1) 

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1) 
If (Detect(T2

U=1,V=1) = = ―yes‖) then 
       Append-head(T2

U=1,V=1, ORk
1)   EndIf  

If (Detect(T2
U=1,V=0) = = ―yes‖) then    

    Append-head(T2
U=1,V=0, ORk

1)   EndIf  
If (Detect(T2

U=0,V=1) = = ―yes‖) then    
     Append-head(T2

U=0,V=1, ORk
1)  EndIf  

If (Detect(T2
U=0,V=0) = = ―yes‖) then   

     Append-head(T2
U=0,V=0, ORk

0)  EndIf  
T0= ∪(T2

U=1,V=1, T2
U=1,V=0, T2

U=0,V=1, T2
U=0,V=0)  

EndAlgorithm 

Figure 4: Parallel OR operation on one bit algorithm 

5.3 XOR Operation on Bioinformatics Computing 
 The Exclusive-OR (XOR) operation of a bit with two 
input Boolean variables U and V generates an output of 1 or 
0. The logic circuitry of parallel XOR on one-bit is shown in 
Figure 5. The corresponding truth table of the one-bit XOR is 
shown in Table 4: 

Table 4: The truth table of the one-bit XOR 
Input Output 

Uk Vk XORk = Uk  Å Vk 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

  
Figure 5: Logic circuitry of Parallel XOR on one bit 

ParallelOneBitXOR(T0, Uk, Vk, XORk)  

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).  

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1)  

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1)  
If (Detect(T2

U=1,V=1) = = ―yes‖) then 
       Append-head(T2

U=1,V=1, XORk
0)  EndIf  

If (Detect(T2
U=1,V=0) = = ―yes‖) then    
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   Append-head(T2
U=1,V=0, XORk

1)  EndIf  
If (Detect(T2

U=0,V=1) = = ―yes‖) then    
   Append-head(T2

U=0,V=1, XORk
1)  EndIf  

If (Detect(T2
U=0,V=0) = = ―yes‖) then   

   Append-head(T2
U=0,V=0, XORk

0)  EndIf  

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0).  
EndAlgorithm  

Figure 6: Parallel XOR operation on one bit algorithm 

5.4 Bio-Arithmetic Parallel Adder on One Bit 
A one-bit adder has three inputs and two outputs. The 

logic circuitry of parallel adder on one-bit is shown in Figure 
7, and the truth table of the one-bit adder is shown in Table 5. 

Table 5: The truth table of the one-bit adder 

 
 

 
Figure7: Logic circuitry of parallel adder on one bit 

Based upon the logic circuitry in Figure 7, we can derive the 
bio-algorithm of parallel adder on one-bit in Figure 8. 
ParallelOneBitAdder(T0, Uk , Vk, Ck )  
ParallelOneBitXOR(T0, Uk,Vk, XORk)  
ParallelOneBitXOR(T0, XORk, Ck , Sk)  
ParallelOneBitAND(T0, Uk ,Vk , ANDk

1)  
ParallelOneBitAND(T0, Ck ,Vk , ANDk

2)  
ParallelOneBitAND(T0, Uk , Ck , ANDk

3)  
ParallelOneBitOR(T0, ANDk

1, ANDk
2, ORk

1)  
ParallelOneBitOR(T0, ORk

1, ANDk
3, ORk

2)  

T1 = +(T0,   
  

) and T2 = － ( T0,    
  

)  

If(Detect(T1)==‖yes‖) then       
Append-head (T1,Ck+1

1)     EndIf  
If(Detect(T2)==‖yes‖) then     

Append-head (T2,Ck+1
0)  EndIf  

T0=∪(T1, T2)  

EndAlgorithm 

Figure 8: Parallel adder on one-bit algorithm 

5.5 Bio-Arithmetic Parallel Adder on n Bits 
In this section, we use the bio-arithmetic adder on one-bit 

to construct the Parallel Adder in Figure 9. 
ParallelAdder(T0, U, V, n)  
Append(T0, C1

0)  
For k=1 to n  
 ParallelOneBitAdder(T0, Uk , Vk, Ck )   
EndFor  
EndAlgorithm 

Figure 9: Parallel adder algorithm 

5.6 Bio-Arithmetic Parallel Comparator on One 
Bit 
 The following algorithm is applied to compare the 
stickers from tubes Ta and Tb. Tube T0

=
 is the first parameter 

containing equal comparisons and to pass these equal 
comparisons to algorithm Parallel Comparator (T0

EDGE_temp
, 

T0
overlay

, Ta, Tb, m, n, g, b) in Figure 11. Algorithm for parallel 
execution on a one bit comparison is shown in Figure 10. 
OneBitComparator(T0

=, Ta , Tb , p ,d) 
T1

1st_on= +(Ta,sp,1
1)and T1

 1st_off= − (Ta,sp,1
1) 

T2
2nd_on= +(Ta,sp,2

1) and T2
 2nd_off = − (Ta,sp,2

1) 
T3

1st_on= +(Tb,sd,1
1) and T3

 1st_off= − (Tb,sd,1
1) 

T4
 2nd_on= +(Tb,sd,2

1) and T4
2nd_off= − (Tb,sd,2

1) 
If (Detect(T1

1st_on)=‗yes‘ and Detect(T3
1st_on)=‗yes‘) then 

If(Detect(T2
2nd_on)=‗yes‘ and Detect(T4

2nd_on)=‗yes‘) then 
T0

=  = ∪(T0
=,T1

1st_on, T3
1st_on, T2

2nd_on,T4
2nd_on)  EndIf    EndIf 

If (Detect(T1
1st_on) = ‗yes‘ and Detect(T3

1st_on) = ‗yes‘) then 
If(Detect(T2

2nd_off)=‗yes‘ and Detect(T4
2nd_off)=‗yes‘) then 

T0
=  = ∪(T0

=,T1
1st_on, T3

1st_on, T2
 2nd_off,T4

 2nd_off)  EndIf   EndIf 

If(Detect(T1
1st_off) = ‗yes‘ and Detect(T3

1st_off) = ‗yes‘) then 
If(Detect(T2

2nd_on)=‗yes‘ and Detect(T4
2nd_on)=‗yes‘) then 

T0
=  = ∪(T0

=,T1
1st_off, T3

1st_off, T2
2nd_on,T4

 2nd_on)  EndIf    EndIf 

If(Detect(T1
1st_off) = ‗yes‘ and Detect(T3

 1st_off) = ‗yes‘) then 
If(Detect(T2

2nd_off)=‗yes‘ and Detect(T4
2nd_off)=‗yes‘) then 

T0
=  = ∪(T0

=,T1
 1st_off, T3

 1st_off, T2
 2nd_off,T4

 2nd_off)  EndIf  EndIf 

EndAlgorithm 

Figure 10: Parallel comparator on one bit 

5.7 Bio-arithmetic Parallel Comparator on n Bits 
 The following algorithm, ParallelComparator (T0, T0 

overlay, Ta, Tb, m, n, g, b), is an n-bit comparator. Parallel 
execution on n bit comparisons is shown in Figure 11. 

ParallelComparator(T0, T0
overlay , Ta , Tb , m, n, g, b) 

For d =0 to Min(n-m,b-g) 
For p=n downto m 

OneBitComparator(T0
=, Ta, Tb, p, g+d) 

If (Detect(T0
=)=―yes‖) then 

Append(T0
overlay,Op,g+d

 1) 
Discard(T0

=)  EndIf 
EndFor    

EndFor 
If (Detect(T0

overlay)=―yes‖) then 
T0=∪(T0, T0

overlay)  EndIf 
Discard(T0

overlay) 
EndAlgorithm 

Figure 11: parallel comparator om n bits 

6 Proposed A Fast Bioinformatics 
Approach for Solving Backtracking of 

DNA Sequence Evolution in One 
Dimensional Cellular Automata 

In this research, the entire bioinformatics approach for 
solving backtracking of DNA sequence evolution in one 
dimensional cellular automata is accomplished by algorithms I 
and II. They are  DNA sequemce evolution in one 
dimensional automata and backtracking of DNA sequence 
evolution repectively. 

Algorithm :SolvingCAModelforDNAEvolutionBacktracking 
(a)Algorithm I : DNASequemceEvolutionInOneDimentionalCA 
(b)Algorithm II: BacktrackingofDNASequenceEvolution 

ENDAlgorithm 

Figure 12: Proposed algorithms to Construct and backtracking 
of DNA Sequence Evolution in one dimensional CA. 

6.1 Proposed Bioinformatics Algorithms to 
Construct DNA Sequence Evolution 

Based on each evolved procedure, the inputs are the 
rule matrix and the CA status in the previous evolution step. 
Once we get the newest status for the current step, record it 
and proceed to the next step until the last step f is completed. 

In algorithm I, there are several procedures proposed 
to solve the construction of the DNA sequence evolution 
model in one dimensional cellular automata. 
(a)Algorithm I: DNASequemceEvolutionInOneDimensionalCA 

For cellular automaton step=0 to f 

(a1) ConstructRuleMatrix (  
       

           
         ) 

(a2) InputCAStatus(     
        

        
        

         
        

) 

(a3) ExecuteCAStatus(       
        

       
        

   
       

           
    ) 
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(a4) SaveCAStatus(       
        

,       
        

)  

     EndFor 
EndAlgorithm 

Figure 15: Algorithms to backtracking of DNA sequence 
evolution in one dimensional cellular automata. 

6.1.1 One Dimensional Cellular Automata 
Cellular automata were proposed by von Neumann and 

Ulam. Any system with many identical discrete elements 
undergoing deterministic local interactions may be modeled as 
cellular automata.  

Cellular automaton usually has several grids of elements 
which each has the finite number of states, such as ―on‖ or 
―off‖, ―has something‖ or nothing. The number of grids can 
be any finite number or dimensions for the need of any 
researchers. Therefore, the presentation example of the one 
dimensional cellular automaton can be shown in Figure 12: 

 
Figure 12: Example of one dimensional cellular automaton 

Suppose that the initial configuration of the one 
dimensional cellular automaton is shown in Figure 12. Using 
rule 90 [2] on the initial configuration, the five following 
continous steps in Figures (a) to (e) for the one dimensional 
cellular automaton evolution are shown in Figure 13.  

 
Figure 13: The five results of the one dimensional cellular 

automaton evolved from Figure 12. 

6.1.2 Construction of DNA Sequence Evolution 
Figure 14 shows the construction of rule matrix. 

Suppose that DNA sequence is n bit length, and the width of 
each one dimensional cellular automaton is n. The following 
algorithm constructs the rule matrix, which the matrix is n*n. 
Procedure ConstructRuleMatrix(  

       
           

         ) 
(1)For i =0 to n-1 

(1a) For j =0 to n-1 

      (1aa) Append (  
    ,                      ). 

EndFor 
EndFor 

EndProcedure 

Figure 14: Construction of the rule matrix. 
 
 
 
 
 
 
 

Figure 15: Example of rule matrix constructed by Figure 13 
Figure 16 shows the CA status used for the next 

configuration. Suppose that DNA sequence is n bit length, and 
the width of next one dimensional cellular automaton is n. 

Procedure InputCAStatus (     
        

        
        

         
        

) 

(1)Discard(     
        

) 

(2)If cellular automaton step=0 

        (2a)Append(     
        

         
        

) 

      Else 

        (2b)Append(     
        

          
        

) 

EndProcedure 

Figure 16: CA status for the next configuration 

 
Figure 17: CA status outcomes generated from Figure 16. 

The next status of one-dimensional cellular automaton 
for the newest configuration can be used in Figure 18. 
Procedure ExecuteCAStatus (       

        
       

        
   

       
           

    ) 

    (1)Discard(       
        

) 
 (2) For i = 0 to n-1 
       (2a)For j= 0 to n-1 

            (2aa)Discard(     
         ) 

            (2ab)Discard(      
         ) 

(2ac)ParallelMultiplier(     
         , U,V,    

    ,      
        

) 

            (2ad)ParallelAdder(      
         ,       

         ,      
         ) 

       EndFor 

       (2b)Append(       
        

       
         ) 

EndFor 
EndProcedure 

Figure 18: Execution of one dimensional cellular automaton. 

 
Figure 19: Execution example of Figure 18. 
The result of one dimensional cellular automaton 

new status for a new configuration is stored in Figure 20. 
Procedure SaveCAStatus(       

        
,       

        
) 

(1)Append(       
        

,       
        

) 

EndProcedure 

Figure 20: Storage to record one dimensional CA new status. 
 
 
Figure 21: one dimensional CA status recorded in Figure 20. 

After storing our newest status of CA, then proceed to 
next CA step and back to procedure (a1) in Algorithm I for 
the next step execution until all step executions are completed. 
The Figure22 shows the CA status after five step executions 
are completed.  

 
 
 
 

 
 

Figure 22: Example of one dimensional cellular automaton 
status after five step executions are completed. 

6.2 Proposed Bioinformatics Algorithms for 
Backtracking of DNA Sequence Evolution 
Based on the evolved rule, each configuration of width 

n in one dimensional cellular automaton evolves to its next 
CA status. As the section 3 mentioned, the order finding 
problem can be identified as finding the order of one of the 
prime factor for an integer. 

In algorithm II, we proposed several procedures shown in 
Figure 23 to solve the backtracking of the DNA sequence 
evolution in one dimensional CA. 
(b)Algorithm II: BacktrackingofDNASequenceEvolution 
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(b1) CreateSolutionspace(                    )  
(b2) CalculategcdforSolutionSpace(                       …     ) 

(b3) CalculateModforSolutionSpace 
(                  …                   ) 

(b4)JudgeorderforSolutionSpace 
(      …                                                           ) 
   EndAlgorithm 

Figure 23: Algorithms for solving backtracking of the DNA 
sequence evolution in one dimensional CA. 

6.2.1 Order-Finding 
 The backtracking of the tumor growth in reversible 

one dimensional cellular automaton is used to find out its  
final configuration that can be evolved to a specific or initial 

configuration. Suppose a function, θ: {x|0  x  4
n
  1}  

{y|0  y  4
m
  1}, is called a one way function. Lemma 1 

shows that a reversible one dimensional cellular automaton is 
a one way function so that one dimensional cellular automaton 
is an one to one relationship. Hence, order finding can be used 
to solve backtrcking of one dimensional cellular automaton. 
   Lemma 1: A reversible one dimensional cellular automaton 
is a one way function. 

Suppose that if a, b, and N are integers with N ≥ 1 and 
          . Then we let ZN denote the set ZN = {0,…,N-
1}.If in addition N is prime, then ZN forms a field. We write   

  
to denote the following set : 

  
  { ∈ 𝑍 : gc        } 

For any element  ∈   
  there exists a unique element  ∈   

  
that satisfies 

                               
Now, for a given element  ∈   

 , the order of a in 
  
 (or the order of a modulo N) is the smallest positive integer 

r of n =⌈  g      ⌉ bits such that 
            

and 0  r  4
n
  1. Assume that a system has 4

n
 possible 

configurations in which it includes the first function F: {k|0  

k  4
n
  1}  {0, 1}, and the second function  

G: {k|0  k  4
n
  1}  {           } 

       The relationships between functions F and G are shown in 
Table 5. In a one dimensional cellular automaton with n cells, 

its evolved function isθ: {k|0  k  4
n
  1}  {v|0  v  4

m
  

1}, where {k|0  k  4
n
  1} is a set of all of the initial 

configurations and {v|0  v 4
m
  1} is a set of all of the 

evolved configurations. If function F finds the corresponding 

initial configuration k for v = θ (k), then F(k)  {1}. 

Otherwise, F(k)  {0}. 
Table 5: A relation of degree 2, R. 

6.2.2 Backtracking of DNA Sequence Evolution 
Suppose that DNA sequence is n bit length, then 

there are 4
n
 possible configurations. Procedure 

CreateSolutionspace constructs the solution space of the group of 
integer N, which we named as ZN and we denote the set ZN = 

{0,…,N-1} is corresponding to n evolution steps of DNA 
sequence in one dimensional CAthat is used for order finding. 
Procedure CreateSolutionspace (                    ) 

(1)For f =0 to N-1 

 (1a) Append (  ,                 ). 
EndFor 

EndProcedure 

Figure 24: Create the solution space for order finding 

 
Figure 25:Example of creating the solution space 

Based upon the one way function, suppose that“A” is an 
integer and co-prime with integer ―N‖, and we let ZN denote 

the set ZN = {0,…,N-1}, then any possible candidate ‖A‖ can 

be defined as: { ∈ 𝑍 : gc        } After procedure 

CalculategcdforSolutionSpace filterates all possible 
configurations, one possible solution can be found if 
gc        . 

In order to compare the values of two tubes in order 
finding, Function ParallelComparator is modified in the 
following: 
ParallelComparator(TR

=, TR
<, TR

>,TA ,TB, n)  
(1) For k = n downto 1  

(2) ParallelOneBitComparator (TC
=, TC

<, TC
> , TA ,TB)  

(2a) If (Detect(TC
=) = = ―yes‖) then 

TR
= = ( TR

=, TC
=). 

(2b) Else If (Detect(TC
<) = = ―yes‖) then 

TR
< = ( TR

<, TC
<).  

(2c) Else If (Detect(TC
>) = = ―yes‖) then 

TR
> = ( TR

>, TC
>).  

EndIf 
EndFor 

EndAlgorithm 

Figure 26: Modified parallel comparator 
Procedure CalculategcdforSolutionSpace 
(                       …     ) 

(1)Append(      ) 
(2)Append(       ) 

(3)For f=1 to N-1 
(3a)Append (     , ) 

(3b)Repeat 
(3ba)ParallelComparator(        

= ,         
< ,         

> ,          , n) 

(3bb)If (Detect(        
> )=‖Yes‖) 

(3bba) ParallelSubtractor(     ,      ,   , n) 

Else 
(3bbb) ParallelSubtractor(  ,   ,      , n) 

(3bc)ParallelComparator(          
= ,           

< ,           
> ,

            , n) 

(3bd)ParallelComparator(          
= ,           

< ,           
> ,

             , n) 

(3be)ParallelComparator(         
= ,          

< ,          
> ,         , 

n) 
(3bf)ParallelComparator(         

= ,          
< ,          

> ,          , 

n) 
       Until(Detect(         

= )=‖Yes‖ || Detect(         
= )=‖Yes‖ || 

Detect(         
= )=‖Yes‖|| Detect(         

= )=‖Yes‖) 

(3c)If(Detect(         
= )=‖Yes‖||Detect(         

= )=‖Yes‖) 

 (3ca)Discard(  ) 

Else 
 (3cb)Discard(  ) 

(3cc)Append(                     ) 
          (3d) Discard(     ) 

EndFor 
EndProcedure 

Figure 27: Calculation for the greatest common divisor 
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Figure 28: Example of gc         for filtration 

Figure 28 shows using gc        tofiltrate all 
possible non-prime DNA sequences. In Figure 29, we can find 
the exponent ―r‖ in the formula which satisfies    
        . If the value of ―a‖ is not prime, then that value is 
are filtrated. We expect that the value of         is 1. In 
order to find the value of ―r‖, the result of         must be 
equal to 1. 
Procedure CalculateModforSolutionSpace 
(                  …                   ) 

(1)For f = 0 to N-1 
(1a)If (Detect(  )=‖No‖) 

Terminate and go to the next loop 
(1b)Append (     , ) 

(1c)For k = 0 to 4n 

(1ca) ParallelModular(          ,   ,      ,n) 

(1cb)ParallelComparator(         
= ,          

< ,          
> ,

                 , n) 
(1cc)If(Detect(         

>        ) 
(1cca) ParallelMultiplier(  ,   ,   , a, b ) 

(1ccb) ParallelAdder(  ,   , 1, n) 
(1ccc)Discard(          )             

       Else if(Detect(         
=        ) 

 Terminate this loop 
EndFor 

(1d) Append-Head (  ,  ) 

(1e)Discard(     ) 

EndFor 

EndProcedure 

Figure 29: Calculation for the Modulo Function 
Once we find all of values of ―r‖ for the corresponding 

group elements, the optimal solution ―r‖ is found, which 
satisfies function:     g           g  , where   g    . 
Procedure JudgeorderforSolutionSpace 
(      ...                                                           ) 

(1)For f=0 to N-1 
(1a)If (Detect(  )=‖No‖) 

Terminate and go to the next loop 
 (1b)Append (     , ) 

 (1c)         +(    ) 

(1d)         -(    ) 

 (1e)log(       ,       ) 

(1f) ParallelMultiplier(         ,        ,        , a, b ) 

(1g) ParallelModular(            ,          ,     , n) 

(1h)ParallelComparator(          
= ,           

< ,           
> ,

                    , n) 

(1i)If (Detect(         
= )=‖Yes‖) 

(1ia)Append(               ) 

Else 

(1ib) Discard(    )  

(1ic) Discard(       ) 

(1id) Discard(       ) 

(1ie) Discard(            ) 

(1if) Discard(     ) 

EndFor 
EndProcedure 

Figure 30 : Backtracking algorithm after judgments for 
all possible selections

 
Figure 31: Example of backtracking to the original 

intial configuration after judgments for all possible selections. 
Figure 31 shows number 0 to be the original intial 

configuration after judgments for all possible selections by 
using function:     g           g  . 

7  Complexity for Solving Backtracking of 
DNA Sequence Evolution 

(1) The time complexity of proposed optimal 
bioinformatics algorithm (Algorithm I) to construct DNA 
sequence evolution in one dimensional cellular automata is 
found in O(n

2
) polynomial bound.  

(2) The time complexity of proposed optimal 
bioinformatics algorithm (Algorithm II) for the backtracking 
of the DNA sequence evolution is in O(n

2
) polynomial bound. 

8    Conclusion 
It is a well-known fact that the DNA mutation plays 

a very important role in DNA sequence evolution. The 
Backtracking problem of DNA sequence evolution in one 
dimensional cellular automaton has ben recognized as a NP 
problem. In order to solve backtracking problem, a newly 
developed optimal bioinformatics algorithm for solving a 
backtracking of the DNA sequence evolution is proposed. 
First, one dimensional cellular automaton is used to construct 
a bioinformatics graphical DNA sequence evolution. Second, 
a bioinformatic order-finding algortihm solves backtracking 
of the DNA sequence evolution. With bioinformatics 
computing which fully utilizing massive storage and parallel 
computations, the construction of DNA sequence evolution 
and its backtracking have become more efficient and more 
faster.  
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