
A VLSI Design approach for
RISC based MIPS architecture

Munmun Ghosal
Research Scholar: Dept. of Electronics Engineering,
G. H. Raisoni College of Engineering, Digdoh Hills,

Nagpur, India 440016.
Email: munmun_ghosal@yahoo.co.in

Dr. A. Y. Deshmukh
 Professor: Dept. of Electronics Engineering

G. H. Raisoni College of Engineering, Digdoh Hills,
Nagpur, India 440016.

 Email: aydeshmukh@gmail.com

Abstract: This paper describes the design and analysis of
the functional units of RISC based MIPS architecture.
The functional units includes the Instruction fetch unit,
instruction decode unit, execution unit, data memory
and control unit. The functions of these modules are
implemented by pipeline without any interlocks and are
simulated successfully on Modelsim 6.3f and Xilinx 9.2i.
It also attempts to achieve high performance with the
use of a simplified instruction set.

Keywords- MIPS, RISC, Pipelining, Memory.

I. INTRODUCTION

MIPS stands for microprocessor without
interlocked pipeline stages. It is a reduced instruction
set computer (RISC) instruction set architecture
(ISA) [1] and is now a performance leader within the
embedded industry. MIPS is a load/store architecture
in which all operations are performed on operands
held in the processor registers.
RISC CPU has advantages such as faster speed,
simplified structure & easier implementation. The
decision to include a microprocessor in a design is
that it transforms the design effort from a logic
design into a software design. With the ever-
increasing size and reductions in cost of FPGA
devices, it is now possible to implement a complete
system on one device, a System-On-Chip (SOC).
In this paper the design of various functional units of
RISC based MIPS processor using VHDL has been
presented. The goal of this work was to evaluate the
performance of various units of the MIPS processor.

II. SALIENT FEATURES OF MIPS
ARCHITECTURE

A. Instructions Set Architecture

The MIPS Architecture defines thirty-two
[6]; 32-bit general purpose registers (GPRs).
All instructions of MIPS microprocessor are 32 bit
and are available in three formats: R-type, I-type and

J-type [4].MIPS instructions are three address
operations taking two sources and one destination.

Figure 1: MIPS (R-Type) CPU Instruction format

Figure 1 explains the format of R-Type CPU
instruction format which is meant for performing
arithmetic operations. It allows a range of register to
register operations.

Figure 2: MIPS Immediate (I-Type) CPU Instruction format

Figure.2 explains the I-type instructions format that
allows a 16 bit immediate to replace one of the
operands and is also used for memory accesses and
for conditional branches.

Figure 3: MIPS Jump (J-Type) CPU Instruction format

Figure.3 explains the J-type format with a 26 bit
immediate field. The only instruction to use this
format is a jump which places the value in the bottom
26 bits of the program counter.

B. Register

A MIPS microprocessor has 32 addressable registers.
The registers are preceded by $ in assembly language
instruction. Two formats for addressing are used i.e.,
using register numbers ($0 through $31) or using
equivalent names ($t1, $sp).Special registers Lo and
Hi used to store result of multiplication and division.
The stack of MIPS grows from high memory to low
memory [3].

Proc. of the International Conference on Pervasive Computing and Communication (PCC)
Editor In Chief Dr. R. K. Singh.
Copyright © 2012 Universal Association of Computer and Electronics Engineers. All rights reserved.
ISBN: 978-981-07-2579-2 doi:10.3850/978-981-07-2579-2 PCC-243

45

Proc. of the International Conference on Pervasive Computing and Communication (PCC)

C. Memory

Memory access instructions are included in the I-type
format. The source register (RS) is added to the
immediate to create an effective address which is
used to reference the memory. The second register
(RT) is either used as the destination in a memory
load or as a source in a memory store. The memory is
byte addressed but is 32 bit wide so all word loads
and stores have to be word aligned. Half word
accesses have to be aligned to half word boundaries.
To help with unaligned loads and stores there are two
more memory access instructions. Load Word Left
(LWL) and Load Word Right (LWR) in combination
allow word loads from unaligned addresses.

D. Pipeline Interlocking

In the MIPS microprocessor this means that some
instructions have an implicit delay before their effect
takes place [1].The general philosophy is to construct
the hardware as simply as possible and, if a result is
not ready for use in the next instruction then not to
stop the whole processor but use the software to
insert instructions into the space. The two main
delays in the MIPS microprocessor are branch
shadows and memory load delays.
Pipelining is a standard feature in RISC processors
which is used to improve both clock speed and
overall performance. It allows a processor to work on
different steps of the instruction at the same time,
thus more instruction can be executed in a shorter
period of time.

IM Reg DM Reg

IM Reg DM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Tim e (in clock cycles)

lw $10, 20($1)

Program�
execution�
order�
(in instructions)

sub $11, $2, $3

ALU

ALU

Figure 4: Five Stage Pipelining

E. Conditions

There are no condition flags but instead all branches
are conditional on the values of the registers in the
main register bank. Each conditional branch
instruction specifies two registers (RS and RT) to be
fetched and tested. A branch is conditional on the
results of two tests. The first is compare the two
registers together to test whether they are equal
(RS=RT). The other test is simply to look at the sign
value (bit 31) of the first register (RS<0). By
choosing the second register to be R0 (RT=0) it
becomes possible to test RS for less than greater or
equal to zero or any combination of the three. For an

unconditional branch the Branch if Greater or Equal
to Zero instruction (BGEZ) is used with R0 as an
operand. This condition will always be true.

III. MIPS FUNCTIONAL UNITS

A. Instruction Fetch Unit

The function of the instruction fetch unit is to obtain
an instruction from the instruction memory using the
current value of the PC and increment the PC value
for the next instruction. The block diagram for the
Instruction fetch unit is shown in Figure 5.

Figure 5: Instruction Fetch unit

B. Instruction Decode Unit

The main function of the instruction decode unit is to
use the 32-bit instruction provided from the previous
instruction fetch unit to index the register file and
obtain the register data values. The block diagram for
the Instruction decode unit is shown in Figure 6.

Figure 6: MIPS Instruction Decode Unit

C. The Control Unit

The control unit examines the instruction opcode bits
[31 – 26] and decodes the instruction to generate nine
control signals to be used in the additional modules.
The block diagram for the Control unit is shown in
Figure 7.

Figure 7: MIPS Control Unit

46

Proc. of the International Conference on Pervasive Computing and Communication (PCC)

D. Execution Unit
The execution unit contains the arithmetic logic unit
(ALU) .The branch address is calculated by adding
the PC+4 to the sign extended immediate field shifted
left 2 bits by a separate adder. The logic elements
include a MUX, an adder, the ALU and the ALU
control. The block diagram for the Execution unit is
shown in Figure 8.

Figure 8: MIPS Execution Unit:

E. Data Memory Unit
It is only accessed by the load and store instructions.
The load instruction asserts the MemRead signal and
uses the ALU Result value as an address to index the
data memory. The read output data is then
subsequently written into the register file. A store
instruction asserts the MemWrite signal and writes
the data value previously read from a register into the
computed memory address.

V. SYNTHESIS AND SIMULATION RESULTS

A. Instruction Fetch Unit

Figure 9: Block diagram of MIPS Instruction fetch Unit obtained
by Synthesis using Xilinx 9.1.

Figure 9 explains the block diagram of Instruction
fetch unit showing the input and output ports. The
inputs to the unit are the instruction from the
instruction memory given as add_result, zero and
branch. The unit is also fed by the global clock and
enable inputs. The output of the unit is a 32 bit
instruction format which is obtained only when the
enable input is high.

Figure 10: RTL Schematic of MIPS Instruction fetch Unit obtained
by Synthesis using Xilinx 9.2i.

Figure 10 explains the RTL Schematic of MIPS
Instruction fetch Unit which gives a detailed structure
of the unit consisting of adder, AND gate, Program
counter and Instruction memory. The Instruction
memory consists of a series of latches which holds
the instruction.

Figure 11: Memory assigned for the analysis of Instruction fetch
Unit in Modelsim 6.3f.

Figure 11 explains the status of the memory obtained
after the simulation of the Instruction Fetch Unit in
which the instruction is written into the Instruction
Memory.

Figure 12: Waveforms of MIPS Instruction fetch Unit obtained by
Simulation using Modelsim 6.3f.

Figure 12 explains the simulation results of the
Instruction fetch Unit. The waveforms show the
various possible combinations of inputs and its
corresponding outputs.

B. Instruction Decode Unit

Figure 13: Block diagram of MIPS Instruction decode Unit
obtained by Synthesis using Xilinx 9.1.

47

Proc. of the International Conference on Pervasive Computing and Communication (PCC)

Figure 13 explains the block diagram of Instruction
decode unit showing the input and output ports. The
inputs to the unit are the outputs from the instruction
fetch unit. It decodes the instruction obtained from
the previous instruction fetch unit.

Figure 14: RTL Schematic of MIPS Instruction Decode Unit
obtained by Synthesis using Xilinx 9.2i.

Figure 14 explains the RTL Schematic of MIPS
Instruction Decode Unit which gives a detailed
structure of the unit consisting of registers, MUX and
sign extend unit.

Figure 15: Memory assigned for the analysis of Instruction decode
Unit in Modelsim 6.3f

Figure 15 explains the contents of the memory
obtained after the simulation of the Instruction
Decode Unit.

Figure 16: Waveforms of MIPS Instruction Decode Unit obtained
by Simulation using Modelsim 6.3f.

Figure 16 explains the simulation results of the
Instruction decode Unit. The waveforms show the
various possible combinations of inputs and its
corresponding outputs whereby depending on the
state of MemtoReg signal, the ALUresult or the
readData is written into the registers. The RegDat
signal determines if instruction bits [20-16] or [15-
11] is provided to the write registers.

C. Control Unit

Figure 17: Block diagram of MIPS Control Unit obtained by
Synthesis using Xilinx 9.1.

Figure 17 explains the block diagram of control unit
showing the input as a 32 bit instruction and outputs
as various control signals which are used to execute a
given instruction and hence the given program.

Figure 18: RTL Schematic of MIPS Control Unit obtained by
Synthesis using Xilinx 9.2i.

Figure 18 explains the RTL Schematic of MIPS
Control Unit which gives a detailed structure
responsible for the generation on control signals.

Figure 19: Waveforms of MIPS Control Unit obtained by
Simulation using Modelsim 6.3f.

Figure 19 explains the simulation results of the
Control Unit which shows various possible values of
the given Instruction and the corresponding values of
the control signals which are alu_op, alu_src, branch,
jump, mem_read, mem_to_reg, mem_write, reg_dst
and reg_write .

48

Proc. of the International Conference on Pervasive Computing and Communication (PCC)

Execution Unit

Figure 20: Block diagram of MIPS Execution Unit obtained by
Synthesis using Xilinx 9.1.

Figure 20 explains the block diagram of Execution
unit. The inputs to the unit are the data from decode
unit and the ALU operation which is to be performed.
The outputs consist of the result obtained on the
desired operation and a zero signal which indicates if
the result is zero or not.

Figure 21: RTL Schematic of MIPS Execution Unit obtained by
Synthesis using Xilinx 9.2i.

Figure 21 explains the RTL Schematic of MIPS
Execution Unit which gives a detailed structure
consisting of Arithmetic and logical Unit together
with multiplexers, shift registers and sign extend unit.

Figure 22: Waveforms of MIPS Execution Unit obtained by
Simulation using Modelsim 6.3f.

Figure 22 explains the simulation result of the
Execution Unit whereby the output alu_result is
obtained with various possible combinations of
inputs i.e. read_data1 and read_data2 and the opcode
which specifies the operation to be performed.

CONCLUSION

A complete realistic, parameterized, synthesizable,
modular, single clock and multiple clock multicore
architecture of RISC based MIPS is studied. MIPS is
a fully pipelined architecture having an efficient
instruction scheduling. The functionality of the
instruction fetch unit, Instruction decode unit,
Control unit and the execution unit has been
synthesized and verified using Modelsim 6.3f and
Xilinx 9.2i.

REFERENCES

[1] Charles Brej.,“A MIPS R3000 microprocessor on an FPGA”,
13 February 2002.

[2] MIPS Technologies, Inc. MIPS32™ Architecture For
Programmers Volume II: The MIPS32™ Instruction
Set June 9, 2003.

[3] MIPS Technologies, Inc. MIPS32R Architecture For
Programmers Volume I:Introduction to the MIPS32
Architecture June 25, 2008.

[4] GauthamP,ParthasarathyR,KarthiBalasubramanian,Departme
nt of Electronics and Communication, Amrita School of
Engineering,Amrita Vishwavidyapeetham. “Low-Power
Pipelined MIPS Processor Design”, ISIC 2009.

[5] Zulkifli, Yudhanto, Soetharyo and Adiono, “Reduced Stall
MIPS Architecture using Pre-Fetching Accelerator”,
International Conference on Electrical Engineering and
Informatic5-7 August 2009, Selangor, Malaysia.

[6] Kui YI Department of Computer Science and Information
Engineer, WuHan Polytechnic University Wuhan, HuBei
Province 430023,China,Yue-Hua DING Department of
Computer Science and Information Engineer, WuHan
Polytechnic University Wuhan, HuBei Province 430023,
China. , “32-bit RISC CPU Based on MIPS Instruction Fetch
Module Design” 2009 International Joint Conference on
Artificial Intelligence.

[7] Tyson, Aisar Labibi Romas, Rd. Siti Intan P, and Trio
Adiono, Ph. D, Bandung Institute of Technology, Jl. Ganesha
10 Bandung – Indonesia, “A Pipelined Double-Issue MIPS
Based Processor Architecture”, 2009 International
Symposium on Intelligent Signal Processing and
Communication Systems (ISPACS 2009) December 7-9,
2009.

[8] Mamun Bin Ibne Reaz, MEEE, Md. Shabiul Islam, MEEE,
Mohd. S. Sulaiman, “A Single Clock Cycle MIPS RISC
Processor Design using VHDL”, MEEE Faculty of
Engineering, Multimedia University, 63 100 Cybejaya,
Selangor, Malaysia, ICSE2002 Proc. 2002, Penang,
Malaysia.

[9] Xizhi Li The CKC honored School of Zhejiang University,
P.R. China,Tiecai Li Department of Electrical Engineering
Harbin Institute of Technology, “ECOMIPS: An Economic
MIPS CPU Design on FPGA”, Proceedings of the 4th IEEE
International Workshop on System-on-Chip for Real-Time
Applications (IWSOC’04)0-7695-2182-7/04 IEEE.

[10] Asghar Bashteen, Ivy Lui, Jill Mullan.”A Superpipeline
Approach to the MIPS Architecture”,MIPS Computer
Systems,950 DeGuigne Drive,Sunnyvale, CA 94086.

[11] Smith Douglas J. 1996. HDL Chip Design: a Practical Guide
for Designing, Synthesizing and Simulating ASICs and
FPGAs using VHDL or Verilog. Madison: DoonPublications.

49

