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Detection of Nonlinearity in Structures Using 

Principal Component Analysis 
[ J.Prawin, A.Rama Mohan Rao ] 

 
Abstract—Presence of nonlinearity in the structure can affect 

the global dynamic behavior. Hence detection of nonlinearity has 

a greater significance in the context of structural health 

monitoring. In this paper we present a technique based on 

principal component analysis for detecting the presence of 

nonlinearity in the structure. The angle between response 

subspaces is taken as a feature to detect nonlinearity. The major 

advantages of the proposed technique is that it uses only 

acceleration time history data and can be used with ambient 

vibration data, which is ideally suited for civil structures. 

Numerical simulation studies have been carried out using a 

cantilever beam with nonlinear cubic stiffness attachment. 

Studies presented in this paper clearly indicate that the proposed 

technique is robust. 
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I.  Introduction  
 

Systems are often referred to as being linear or nonlinear. 
However, all real structures are inherently nonlinear. Large 
elastic deformations introduce geometric nonlinearity, 
deformation-dependent material properties result in material 
nonlinearity, and other nonlinearities can be caused by 
backlash, clearances between mounting brackets, geometric 
constraints on deformation, misalignment of substructures, dry 
friction, and many types of nonlinear hysteretic damping, and 
material damping of shape memory alloys and other materials.  
This structural dynamic behavior must generally be taken into 
account in the design of systems in order to insure their 
performance and reliability.  

Nonlinear system identification is a very challenging 
inverse engineering problem. It can be viewed as succession of 
three steps: detection, characterization and parameter 
estimation. This paper focuses on the detection step that 
enables to know whether or not the structure has a significant 
level of non-linear behavior and whether or not it can be safely 
neglected. 
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Several methods have been evolved for detecting nonlinearity 

and can be found in literature. The Frequency domain data 

methods such as the homogeneity test examines distortions in 

the Frequency Response Functions (FRF) for several levels of 

excitation (FRF is invariant for a linear system); the Hilbert 

transform that differs from the original FRF [1, 2]. The 

stepped-sine excitation gives the best result or well-defined 

FRF where the distortion clearly appears in the case of a 

nonlinear system. Fewer techniques exist that use only time 

data. For example, the Hilbert transform is applied to signals 

in the time domain in order to extract the time varying 

instantaneous phase and frequency [3] by which nonlinearity 

is detected. The Continuous wavelet transform uses the free 

responses of a nonlinear system to detect nonlinearities by 

looking at distortions in the amplitude and phase of the 

wavelet [4].  

 
In this paper, we present a technique to detect nonlinearity 

using Principal Component Analysis. This approach uses 
random excited time domain response data so that no signal 
processing transformation of the measurement is needed and 
all the information is conserved. The concept of subspace 
angles .between two response subspaces is taken as a feature 
for detecting the presence of nonlinearity in the structure. 

  

II. Principal Component Analysis 
 

Principal component analysis (PCA) [5] is a mathematical 
procedure that uses an orthogonal transformation to convert a 
set of observations of possibly correlated variables into a set of 
values of linearly uncorrelated variables called principal 
components. The number of principal components is less than 
or equal to the number of original variables. PCA is closely 
related to Singular Value Decomposition (SVD) and Proper 
Orthogonal Decomposition, also known as Karhunen-Loeve 
decomposition. One specific application of PCA in the field of 
structural dynamics is to find the subspaces spanned by the 
principal directions that contain most of the system‟s energy 
without calculating the modes shapes. 

 
It is always more efficient to identify directly the principal 

components, also called principal directions, rather than 
performing an exact modal identification to compute the 
trajectories covered by the measurements.  However, under 
certain assumptions, principal components may represent the 
vibration modes of the system.   

 
 

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-03-50 

 



 

258 

 

In the present work, it is assumed that the number of 
sensors „n‟ is greater than the number of structural modes 
(m+1) involved in order to maintain the redundancy of the 
data. Let Q denote a discrete block time-history of n x b 
(where b >> n) sampled responses  

1 j 1 1 j b

n j 1 n j b

x (t ) .... x (t )

Q . .... .

x (t ) .... x (t )

 

 
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                            (1) 

 

The singular value decomposition (SVD) of the block data 
Q gives: 
 

                          
TQ U V= S                                            (2) 

 

where U is an orthonormal matrix (n X n) whose columns 

define the principal components (PCs) and form a subspace 

spanning the data. Each column of U is associated with the      

(b X b) time coefficient matrix V. The singular values, given 

by the (n X b) diagonal matrix S  and sorted in descending 

order, can be related to the energy associated with the 

corresponding principal components of U. This means that the 

structure will react mainly in the directions of the principal 

components associated with the highest energies. We may 

note here that it is computationally more efficient to calculate 

the SVD of: 

 
T 2 TQQ U V= S                                          (3) 

 

Theoretically, only the first m + 1 eigen values of Q are 

nonzero. Nevertheless, we know that test data contains 

measurement noise. Since noise has much lower energy than 

the structural modes, the components of U associated with 

eigen values presenting an order of magnitude much lower 

than others have to be discarded from the principal component 

base. In the linear case, the principal directions extracted from 

test data, always lie in the subspace (or hyper-plane) generated 

by the participating modes 
 

Mathematically speaking, this means that the so-called 
principal hyper-plane is invariant, even if the directions of the 
principal vectors are dependent on the structural excitation. 
Nevertheless, the principal hyper-plane is dependent on the 
structural characteristics. The PCA may be then considered as 
a powerful and straightforward approach to compute a modal 
metrics of test data and to detect nonlinearity by comparing 
reference and current structural subsets. 

A. Angle between Subspaces 
 

Given a set of data, the active principal components–PCs 

define a subspace (or hyper-plane) that characterizes the 

dynamic behavior of the system. A change in the system 

modifies consequently its dynamic state and affects the 

subspace spanned by the PCs. This change may be estimated 

using the concept of angles between two subspaces introduced 

by Golub and Van Loan [7]. This concept allows quantifying 

the spatial coherence between two time-history blocks of an 

oscillating system. Let sn xp
A ¡  and sn xp

B ¡ be two 

subsets, each with linearly independent columns. First a QR 

factorization allows computing the orthonormal bases of A 

and B: 

s

s

n xp

A A A

n xq

B B B

A Q R         Q  

B Q R          Q  

= Î

= Î

¡

¡
                  (4) 

 

Thus, the singular values of T

A BQ Q  define the q cosines of the 

principal angles 
iq  between A and B. 

T

A B iSVD(Q Q )   Diag(cos( )) i=1, ....q  q®   (5) 

            

The largest angle allows quantifying how the subspaces A and 

B are globally different. 

 

B. Limit of Linearity 
 

The nonlinearity in the structure can be detected using 

these principal angles. The responses of the subspaces 

between reference data, i.e., pristine linear system and the 

current data i.e., nonlinear system, are compared by computing 

the principal angles. If the principal angle between these two 

subspaces is appreciably high, it can be concluded that the 

system differs due to nonlinearity. Theoretically, for a linear 

system in undamaged condition, the angle between the 

subspaces spanned by reference data and the current data 

should be zero. However, practically, it will not be zero due to 

environmental variances and also the noises present in the 

measurement process. In order to avoid the false positive 

detection, a large number of reference data sets are collected 

by taking measurements at different time instants and 

partitioned into several sets. The principal angle between the 

subspace spanned by each of these sets and the subspace 

spanned by the whole data set is computed, which gives us a 

collection of different subspace angle values. When dealing 

with the current data set, an alarm is issued when the 

monitored angle exceeds the upper control limit (UCL) 

defined as the mean angle plus three times its standard 

deviation. This corresponds to a 99.7% confidence interval for 

a normal distribution. 

 
The subspace angle spanned by the system is computed 

and that if it is above the proposed limit of linearity, the 
system is non-linear. The main interest of this limit of linearity 
is that it avoids any kind of personal and subjective 
interpretation of the results or the conclusions on the presence 
or not of non-linearity in the structure. 
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III. Application to a Numerical 
Example 

The cantilever steel beam 1m*0.014m*0.014m, shown in 
Figure.1, with 11 node and 22 degree-of-freedom (translations 
along the y-axis and rotations around the z-axis) in the finite 
element model [5]. A non-linear cubic spring KNL 

(KNL=1e7Nm
-3

) is added between the free end and the ground. 
The non-linear force, FKNL, due to the nonlinear stiffness can 
be expressed as functions of the translational displacement x11 
of node 11 along y direction: 

                           
3

11= NNL LK KF x                           (6) 

 

Figure1. Cantilever Beam 

The beam is excited on node 11 with a 1.2 sec., constant 
amplitude random excitation. In order to compare various 
levels of non-linearity, different input amplitudes are 
considered. The first input has a very low amplitude level 
0.35NRMS, which guarantees a linear behavior. These 
responses are designated as the reference data. The various 
other RMS amplitude levels 2, 4, 12, 40NRMS are also 
considered, where non-linear behaviors are expected.  

 
The acceleration time history response is computed using a 

Newmark time integration technique combining with a 
Newton Raphson algorithm. The measurement data 
corresponding only to the translational degree of freedom of 
nodes 2–11 along the y axis are considered.   

 
The data subsets are generated by partitioning the entire 

acceleration time history response into windows of equal or 
varied length. The acceleration time history data of the 
cantilever beam shown in Figure 1, is partitioned into 6 
subsets of 750 time steps each, up to 4500

th
 time instant, 

where the system is behaving linearly and the time history 
response after 4500

th
 time instant is partitioned into 3 subsets 

of each 500 time steps. 
 

In order to identify the presence of nonlinearity, the 
concept of subspace angles of different data subsets as 
presented earlier is employed. For this purpose six data subsets 
for the linear system are generated varying magnitude of 
random loading and with varied noise levels. Even though the 
angles are expected to be closer to zero, when the system is 
linear some marginal values of subspace angles will be 
obtained due to noises present in the response. Based on the 
subspace angles obtained the average value and the standard 
deviations are computed to arrive at the control limit. 

UCL1= 0.0911+3(0.0203) = 0.152 considering one 
principal component 

UCL2=0.0080+3(0.0048) = 0.0223 considering two 
principal components 

UCL3=0.0991+3(0.0150) = 0.1441 considering three 
principal components 
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 Figure3. Detection of nonlinearity with one  principal component 
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Figure5. Detection of nonlinearity using three principal components 

 

The subsapce angles computed using  the subsapces 
generated from the accleration time history response of the 
canliver beam, consiting of both linear and nolinear responses 
are presented in Figures 3 to 5  for varied number of principal 
components. In Figure 2 ,the energy levels and cumulative 
energy levels present in the singualr values associated with 
principal components is presented. This will help in chhosing 
approate number of princiapl components. It is clear from 
figure 2, that it will be sufficient to take maximum of three 
active   principal components whose energy works out to be 
99.5% for detection of nonlinearity. The subspace angles 
computed with only one principal component and shown in 
figure 3, one can easily observe that nonlinearity can be 
detected (subset 7) exactly only when the excitation levels are 
high (12 and 40NRMS). However with two or three principal 
components given in figure.4 and figure.5 respectively, the 
nonlinearity detection is quite robust even for low levels of 
excitation (4NRMS). 

IV. Conclusion 
In this paper a technique based on principal component 

analysis to detect the presence of nonlinearity using ambient 
vibration data is presented. The angle between the two 
response subspaces is considered as a feature to detect 
nonlinearity. Numerical simulation studies have been carried 
out by considering a cantilever beam with nonlinear cubic 
stiffness attached element. The studies presented in this paper 
clearly indicate that the proposed technique is robust. The 
major advantage of the technique is that it directly uses 
acceleration time history data and does not require any signal 
processing or transformations. Further the proposed technique 
is well suited for civil engineering applications as it uses 
ambient vibration data. 
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