

233

Model Based Development of Control Strategy for Fuel Injection Management
and Production code Generation

VP. Arvind Raj

 M.Tech Automotive Electronics

Veltech Technical University

Chennai, India

 R. Sridhar

R&D

UCALFuel Systems Ltd.

Chennai, India

M. Sivakumar

R&D

UCALFuel Systems Ltd.

Chennai, India

G. Sasikala

Department of Electrical Engineering

Veltech Technical University

Chennai, India

Abstract— Conventionally, the control strategy of a Fuel Injection

Management system is created in the form of hand written

Embedded C codes; this cannot be understood by the personnel of

other disciplines working on the system. In this paper, the methods

to implement model based design for the same control strategy

along with production code generation has been discussed, along

with the benefits of the model based design adaptation.

Keywords- Model Based Design; Auto Code Generation; Legacy

Code Tool; Fuel Injection Management.

I. INTRODUCTION

In Automobile Sector, Control System for applications

plays a major role in performing the intended task of those

applications. Basic architecture of all these control systems

consists of hand written embedded C codes. On the contrary,

in an automobile sector control system alone can‘t perform

everything; it requires support from various other factors

engineered by different departments, i.e. calibration, data

acquisition, measurement etc..,. So construction of control

strategy that governs the working of the control system should

never be a standalone process, which it is at present.

Vast inputs and feedbacks from various departments along

with the predefined requirements, intends to create a large

complex control strategy and more space for human errors. To

avoid this we need to create a common environment/platform

where all these departments can work, and communicate

effectively between the different departments to avoid the

errors at a much early stage of the project. Hence the high

error rectification costs during the final phases of the project

will be reduced.

Model Based Design using Simulink provides that common

platform, to work and implement the same control strategy in

the form of mathematical models using the blocks available in

the library of Simulink. Once the modeling is completed, it

can be configured to generate C code with the help of Real

Time Workshop Embedded Coder available in the Simulink.

Lack of Application Programming Interfaces and their

supporting files can be covered, by using the legacy code tool

and custom code addition.

II. CONTROL STRATEGY FOR FUEL INJECTION

MANAGEMENT

A. Engine State Definition

It determines the manner in which the various system

strategies operate at any particular time. This defines the

engine states available within the engine management system

and defines the rules for the transition between each of these

states. Different engine states are; power-off, stall, cranking,

idle, running, wide-open throttle and over-run cut as in Fig.1.

Generally the transitions between these states are influenced

by the engine rpm and Throttle position, which is obtained

from the crankshaft position sensor and Throttle position

sensor.

Fig.1 Engine State Definition

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-101

234

B. Phase Recognition

It determines which phase of the engine is on for a four

stroke single cylinder engine i.e. induction/compression or

expansion/exhaust. This information is used to allow the

engine management system to run the fuel injector; ignition

and idle air control valve sequentially i.e. one event per cycle.

This strategy examines the encoder tooth period over a 90

degree crank angle segment prior to and immediately after

physical engine Top Dead Centre on a revolution-by-

revolution basis. Phase of the engine is determined using the

speed fluctuations that occur due to the firing and non-firing

revolution of each cycle.

C. Determination of Airflow

Intake air flow is calculated, based on the temperature and

pressure of the Intake Air, which is measured by the sensors.

From those values Air per cylinder per cycle value can be

calculated by using the lookup mechanism.

Airflow = (Manifold Pressure * Airflow Volume Correction)/

((273+Intake Air Temp.)*Atmospheric Pressure) (1)

Air per Cylinder per Volume = (Volumetric Efficiency(in %)

* Cylinder Volume(in ml)) / R (2)

Where, R = Universal Gas Constant = 0.287 (KJ/Kg °K)

Temp. = Temperature

D. Determination of Fuelling

The base fuelling value is determined based on the

requested Air Fuel ratio and the Air per cylinder per cycle

value (determination of Airflow). Trims are applied to the

base fuelling based on the different engine states to calculate

the optimum amount of fuel required. Closed loop fuelling

offsets were applied to perturbate the Air Fuel Ratio about the

stoichiometric Point (14.7) and a fuelling adaption value is

applied so that this perturbation occurs around the zero value.

III. MODEL BASED DESIGN

Model-Based Design is a process that enables faster, more

cost-effective development of dynamic systems; including

control systems, signal processing and communications

systems. In Model Based Design, a system-model is at the

center of the development process, from requirements

development, through design, implementation, and testing.

The model is an executable specification that is continually

refined throughout the development process.

A. Modeling

The process consists of six steps to model any system, they

are: Defining the system, Identifying system components,

modeling the system with equations, building the Simulink

block diagram, running the simulation, validating the

simulation results. The pseudo code of the above mentioned

control strategies are converted into system components and

are represented using simple mathematical equations and then

modeled with the help of Simulink blocks. For example, the

following equation used for filtering,

SampFiltn=Sample+(((SampFiltn-1–Sample)*SampFiltC)/256).

(3)

Is modeled as in Fig.2,

Sample Time: 0.01 and data types generally used were double,

uint16 and int16.

B. Stateflow

It is an interactive, graphical design tool for developing

and simulating event-driven systems based on finite-state

machine theory. Fig. 3 is an example of a Stateflow chart.

Stateflow has been used in order to determine the engine states

at various scenarios. It is an event-driven process, hence

Stateflow has been adopted. It has two types of states,

Exclusive state and parallel state, in this paper I have used

exclusive states, based on the exclusivity of the events that are

controlled. ―en:‖ in the Fig.3 denotes the Entry condition that

is assigned as soon as the control moves to ―EngineState‖.

And the arrows are used to denote the transition from one state

to another, which occurs if the condition mentioned inside the

[] is satisfied. Likewise, the entire enginestate has been

modeled using the same methodology.

C. Legacy Code Tool

It is used to migrate a certain C codes like APIs and I/O

interfaces to Simulink Environment via MATLAB. It is a set

of commands as in Fig.4, which has to be typed in the

Fig. 2 Modeling of Equation

Fig.3 Portion of Stateflow Chart

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-101

235

command window of MATLAB and finally a S-Function

block
[4]

 will be created inside the Simulink window.

For creating the s-function block, the following commands

where typed in the command window of the MATLAB.

def = legacy_code('initialize')

def.SourceFiles = {'doubleIt.c'}

def.HeaderFiles = {'doubleIt.h'};

def.SFunctionName = 'ex_sfun_doubleIt';

def.OutputFcnSpec = 'double y1 = doubleIt(double u1)';

legacy_code('sfcn_cmex_generate',def)

legacy_code('compile',def);

legacy_code(‗slblock_generate‘,def);

Typing the above command in the MATLAB command

window will generate a S-function block as in Fig.5, the block

performs a Multiply by 2 operation, to the input given.

IV. AUTO CODE GENERATION

A. Real Time Workshop Embedded Coder

It is an add-on product of Simulink used for embedded

software development. After completing the modeling of the

control system, we have to configure some parameters in order

to generate an efficient C code. In the model window, click on

the simulation tab, and then click the ―configuration

parameters‖ option. The configuration window opens, in this

window go to solver menu and select ―Fixed-step solver‖ in

the ―Solver Options > Type‖ option. In the side window,

choose ―Hardware Implementation‖ and select the target

specific microcontroller family from the given options.

B. Code Generation Advisor

In the Real-Time Workshop window in configuration

parameters, select ―ert.tlc‖ under the system target file option.

Then set the Objective in the ―Select objective:‖ option. You

get to have 4 different objectives, they are: efficiency,

traceability, debugging and safety precaution. Out of these

four options, choose ―efficiency‖ in order to generate a

memory efficient code. Once you have selected the Objective.

Click the ―Check model‖ button, without changing any other

options. And this opens the code generation advisor, based on

the objective the code generation advisor provides the options,

which are all to be used. And also provides an option for

modifying all parameters at the click of a button.

C. Custom Code

It is an option available inside the configuration

parameters of the model. Under the Real-Time Workshop

dropdown menu, we have a tab called as ―custom code‖.

Include the path of all the necessary source and header files in

the ―Include list of additional‖ option and no need to put any

extension, the Real time Workshop embedded coder derives

the file type and memory allocation based on the initial

statements of a code file. Thus we could include the required

source and header files inside the auto generated code.

 Now after configuring all the options in the

configuration parameters window, now go back to the system

model move away the source and sink blocks from the

calculation blocks. Now select all the blocks in the model

except the source and sink blocks by clicking and dragging the

cursor. Now right click on any of the selected blocks, in the

drop down menu, click on the option named ―Real-Time

workshop‖, a side menu opens up in that menu click on the

―Build‖ option. It generates the auto-code with necessary c

functions and supporting source and header files linked to the

code.

V. TESTING

The Auto Code Generation creates a set of source and

header files inside the present working directory, which has to

be added into the corresponding Header and Source file

folders of the Fuel Management System along with the other

files. These files have to be added inside the Keil project as

well. And a new function has to be created known as

Placeholder Function
 [3]

, inside the legacy code. And it has to

be called from the Scheduler, the placeholder function acts as

an interface between the Legacy code and Auto-generated

code. In order to understand about the placeholder function,

refer to [3]. Once the process of creating a placeholder

function is done, we can continue with the testing of the code.

We used the Keil Ulink Debugger and Vector CANape along

with CANcase XL in order to monitor the proper working of

the generated auto-code. Result obtained during the PIL

testing is depicted in Fig.6

Fig.4 Legacy code Tool Commands

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-101

236

VI. CONCLUSION

Thus by creating a Model Based Design of the control strategy

for fuel injection management, a common design environment

has been created and configured for generating production

ready codes. The Level of Interdepartmental dependency was

reduced. And the overall time required to complete a project

has been considerably reduced.

VII. ACKNOLEDGMENT

I would like to thank Mr. M. Sivakumar, R. Sridhar and

G. Sasikala for their valuable guidance and for their support

throughout the project. I would like to express my gratitude to

Mr. Nandu K. Sreevalsan, Mr S.Bharanitharan and Mr M.B.

Prem Anand for spending their valuable time and sharing their

knowledge, which helped me to complete the work.

Fig.6 Vector CANape result for Engine Oil Temperature Sensor.

Fig.5 Legacy code tool example

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-101

237

REFERENCES

[1] Jeffrey M. Thate, Robert A. Kagy, Robyn A. Jackey, Roger Theyyunni,

Jagadish Gattu. Methods for Interfacing Common Utility Services in Simulink
Models used for Production Code Generation. SAE International 2009; 2009-

01-0155.

[2] Tom Erkkinen, Scott Breiner. Automatic code generation – Technology
Adoption lessons learned from commercial vehicle case studies. SAE

International 2009: 2009-01-4249.

[3] Jinming Yang, Sumithra Krishnan, Jason Bauman, Al Beydoun.
Implementation of Auto-code generation in legacy code for body control

software applications, SAE Internation 2008: 2008-01-0749

[4] Information on http://www.matlabcentral.com.

[5] Information on MATLAB Software Help Search Engine.

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-101

