

53

Performance Optimization of Levenberg-Marquardt

Algorithm with Parallelization

Nirmal Lourdh Rayan S.

Computer Science and Engineering,

Christ University Faculty of Engineering

Bangalore, India

K. Balachandran

Computer Science and Engineering,

Christ University Faculty of Engineering

Bangalore, India

Abstract—Mathematical Optimization refers to finding the

minimum or maximum value from a desired set of outcomes.

This paper discusses about optimization in two levels. Levenberg-

Marquardt is used for back propagation to minimize non-linear

least square error using curve fitting. This minimization involves

functional optimization to reduce error in neural network (NN)

classification. The second level of optimization is on improving

the performance of Levenberg-Marquardt algorithm (LMA) by

using divide and conquer methods to parallelize computation.

We make use of Fork/Join framework in Java which uses

divide and conquer technique to split a task into many

elementary subtasks and executing them in parallel. Additionally,

the Fork/Join architecture uses work-stealing algorithm to

effectively utilize the worker threads that have completed their

tasks to steal tasks from other threads that are still busy.

We have used standard UCI Machine Learning Repository

dataset called Million Song Dataset for constructing the neural

network. The target output will be the year of song’s publication

and the input vector consists of the metadata and characteristics

of audio (song).

The effective speedup achieved for varying data sizes are

estimated by comparing the performance of traditional LMA

with parallelized LMA. We also study the rate of improvement in

performance when the input data sample size is varied from 100

to 1,00,000. We have achieved over 300% steady gain in

performance using thread level parallelism on LMA in a single

workstation.

Keywords—Levenberg-Marquardt; Back Propagation; Neural

Networks; Optimization, Fitting, Parallelization; Fork/Join; Divide

and Conquer; Java.

I. INTRODUCTION

The brain is a highly complex, nonlinear, and parallel
computer (information-processing system). It is an organ that
serves as the center of the nervous system in all vertebrate and
most invertebrate animals. In neuroscience, a biological neural
network (also called a neural pathway) is a series of
interconnected neurons whose activation defines a recognizable
linear pathway. Several axon terminals form an interface
through which neurons interact with their neighbors connected
via synapses to dendrites on other neurons. The structure of a
biological neuron is given in Fig. 1. This forms a network of

neurons. If the sum of the input signals into one neuron
surpasses a certain threshold, the neuron sends an action
potential (AP) at the axon hillock and transmits this electrical
signal along the
axon.

Fig 1. Structure of a Neuron.

A. Artificial Neural Network

An artificial neural network is a massively parallel
distributed processor made up of simple processing units that
has a natural propensity for storing experiential knowledge and
making it available for use. Neural network system is currently
sethe most active subject in artificial intelligence research. It is
also the achievement created by human manufacturing,
scientific research, artificial intelligence and computer
technology [5].

Perceptron: It is an algorithm for supervised classification
of an input into one of several possible non-binary outputs in
neural networks. Perceptron is a type of linear classifier that
makes its predictions based on a linear predictor function
combining a set of weights with the feature vector.

 Fig. 2 depicts a simple perceptron. It consists of three
layers: input, hidden and output. The core functionality
performed on the input data to get the desired output can be
subdivided into two units: the summation unit and activation
unit. The summation unit gives the sum of product of weights

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-11

54

and their corresponding input signal strength. A multi-layer
perceptron (MLP) is a weighted directional bipartite graph.
MLP is created by LMA for classifying Million Song Dataset
from UCI Machine Learning Repository using error back
propagation. The second unit consists of the activation
function which uses a threshold to estimate the output of a
neural network. Different types of activation functions exist
such as Linear Threshold (as shown in Fig. 2), Step function,
Sigmoid function, Multi-quadratic function, Gaussian function,
Tanh function etc.

Fig 2. Perceptron with Linear Threshold Activation Unit

B. Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm (Referred as LM
henceforth) is an iterative technique that locates a local
minimum of a multivariate function that is expressed as the
sum of squares of various non-linear, real-valued functions.
LMA has become a standard technique for nonlinear least-
square problems, vastly adopted in various disciplines for
handling data-fitting applications.

LM can be thought of as a combination of steepest descent
and the Gauss-Newton method.

• The LM algorithm behaves like a steepest descent
method when the current solution is far from a local minimum:
slow, but guaranteed to converge.

• It becomes a Gauss-Newton method and exhibits fast
convergence when the current solution is close to the local
minimum [7].

In our research, an optimized Levenberg-Marquardt
algorithm is implemented, by harnessing thread level
parallelism in Java, to enhance performance of training a neural
network.

C. Fork-Join Framework

The Fork/Join architecture, as shown in Fig. 3, is
introduced in Java SE 7 to make use of all the processing cores
available in a single workstation to perform execution of tasks
in parallel instead of sequential. It is an implementation of the
ExecutorService interface that helps in effectively sharing
workload among multiple processors. This framework is
designed by Java for work that can be broken into smaller
pieces recursively.

Fig 3. Fork-Join Architecture displaying task queue for each
processor

D. Description of Terms

Neurons: A cell capable of transmitting nerve impulses; a

nerve cell.

Pathway: A chain of nerve fibers along which impulses

normally travel.

Axon: The long process of a nerve fiber that conducts

impulses away from the body of the nerve.

Synapse: The link between two nerve cells, consisting of a

minute gap across which impulses pass by diffusion of a

neurotransmitter.

Dendrites: The short branched extension of a nerve cell, along

which impulses received from other cells at synapses are

transmitted to the cell body.

Minima: The minimum of a function is the smallest value that

the function takes at a point either within a given

neighborhood or on the function domain in its entirety (global

or absolute extremum).

Speedup: It refers to how much a parallel algorithm is faster

than a corresponding sequential algorithm.

Synaptic Weight: It refers to the strength or amplitude of a

connection between two nodes

II. RELATED WORK

A thorough understanding of the current research in the

field of Neural Networks is necessary to identify areas that

require improvements. Prior researches indicate promising

outcomes in terms of enhancing LM algorithm in space and

time domain however, there are only a few efforts on

optimization of LMA.

Lera et. al. [1] present a quasi-local Levenberg-Marquardt

algorithm for neural network training. The main idea is to

consider these neighborhoods as independent learning units.

By doing this, they applied LM reduced to one neighborhood

in each step of the algorithm, decreasing the number of

operations and the memory required. Thus, a more local

method is obtained, meaning that, in order to adapt a given

neuron’s weights we only need information about its

neighborhood. They prove that these neighborhoods

significantly decrease memory and time requirements imposed

by the Levenberg-Marquardt method.

Zhao et. al. compare the quality of various BP algorithms

in neural network toolbox of MATLAB and prove the

superiority of trainlm. Especially for medium-sized networks,

trainlm has a fast convergence, but the different algorithm

should be selected in the different network [2].

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-11

55

Zhang et. al. adopt LMA to achieve Gaussian fitting on

multiple GPUs (Graphics Processing Units). Since the

algorithm involves plenty of matrix operations, it is

appropriate to take advantage of GPU to deal with this parallel

problem. They achieve quick Gaussian fitting on massive

numbers of particle images taken by an ultra-microscope using

multiple GPUs and show that near proportional growth of

computing speed can be reached as the number of GPUs are

increased. They analyzed the LMA and found that there exists

a large number of matrix operations, including matrix

multiplication, addition and calculating the Jacobian matrix.

Therefore, each block in GPU was assigned to fit a curve, and

the threads in each block adopt appropriate parallel methods,

including reduction algorithms. Parallel computing was

applied in both task-level and instruction-level for better

improvement of curve fitting [3].

Reynaldi et. al. train finite element based on neural network

using Back propagation and Levenberg-Marquardt algorithm.

The purpose was to solve differential equation and inverse

problem of differential equation. They formulate hybrid finite

element neural network using both back propagation algorithm

and Levenberg-Marquardt algorithm for solving inverse

problem [4].

Jian-rong Li applied and modeled Levenberg-Marquardt

algorithm to establish a neural network model for predicting

the damage of the oil and gas layers to protect the layers and

provide effective assistance. The neural network constructed

had a maximum error of 0.022249% and accuracy above 99%.

The technology will be an innovation in the damage

assessment of oil and gas layer, for it has perfected the layers

monitoring and applied neural network model into predicting

damage [5].

A research on whether Levenberg-Marquardt is the most

efficient optimization algorithm for implementing bundle

adjustment was conducted by Lourakis et. al. Bundle

Adjustment (BA) is often used as the last step of many

feature-based 3D reconstruction algorithms. BA is typically

the most time consuming computation in such algorithms [7].

Gavin P.H describe the Levenberg-Marquardt method for

nonlinear least square curve-fitting problems. Least square

problems arise when fitting a parameterized function to a set

of measured data points by minimizing the sum of the squares

of the errors between the data points and the function.

Nonlinear least square problems arise when the function is not

linear in the parameters. Least square methods (nonlinear)

involve an iterative improvement to parameter values in order

to reduce the sum of the squares of the errors between the

function and the measured data points. [8]

A. Current Systems

The current Machine Learning algorithms are implemented
in sequential programming environment using Java (translated
from FORTRAN - Numerical Recipes in FORTRAN). Existing
Levenberg-Marquardt algorithm is programmed sequentially to
function in a single processing environment. Zhang et. al. adopt
LMA to achieve Gaussian Fitting using multiple GPUs. The
complex matrix operations were parallelized of increase the
performance.

B. Limitations of Existing Systems

Although researchers have tried implementing LM
algorithm in distributed environment, there is a lack to
parallelization techniques that make use of the resources
offered by a single workstation.

C. Proposed System

The multi-core environment available with computers

these days allow us to make use of programming paradigms

that make use of divide and rule techniques for work sharing

and load balancing. Additionally, the work-stealing algorithm

within Fork/Join framework allows us to re-use existing

threads that have completed their tasks instead of creating new

threads for handling new tasks. We also achieve this with very

minimal synchronization cost. Our research discusses the

implementation of LM algorithm in a commodity workstation

consisting of multi-cores processing units, RAM and cache

memory.

III. DATASET

We have used standard dataset available for download for
academic research in UCI Machine Learning Repository.

The Million Song Dataset (or MSD) is a freely-available
collection of audio features and metadata for a million
contemporary popular music tracks.

The core purposes of MSD include:

• Providing a reference dataset for evaluating research
• Encouraging research on algorithms that scale to
commercial sizes

• Acts as a shortcut alternative to creating a large
dataset with APIs (e.g. The Echo Nest's)

• Helping new researchers get started in the MIR field

The dataset is provided by The Echo Nest. The core of the
dataset is the feature analysis and metadata for one million
songs. The dataset only includes the derived features or meta-
data not any audio.

In this paper, we have not performed data pre-processing on
the input dataset before training the neural network. This step
has been ignored, although it is of prime importance in
building a neural network because our main focus is not to
create the most accurate neural network but instead to create
neural network with and without parallelization to estimate the
speedup gained. Therefore, we have used all the 90 input
attribute vectors without performing feature subset selection.

IV. METHODOLOGY

Fork/Join parallelism is used for obtaining good parallel
performance and is among the simplest and most effective
design techniques. Fork/join algorithms are parallel
implementations of divide−and−conquer algorithms which
takes the typical form:

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-11

56

Result solve (Problem problem) {

if (problem is small)

 directly solve problem

else {

 split problem into independent parts

 fork new subtasks to solve each part

 join all subtasks

 compose result from subresults

 }

}

The fork operation starts a new parallel fork/join subtask.
On the other hand, the join() operation causes the current task
not to proceed until the forked subtask has finished. Like other
divide−and−conquer algorithms, fork/join algorithms also are
nearly always recursive, continuously splitting subtasks until
they are small enough to solve using short, simple sequential
methods.

There are two specific methods featured in
ForkJoinTask objects:

 The fork() method allows a ForkJoinTask to be planned for
asynchronous execution. This splits the parent task into
subtasks and allows a new ForkJoinTask to be launched
from an existing one.

 The join() method allows a ForkJoinTask object to wait for
the completion of another one.

V. EXPERIMENTAL SETUP

A modification to the LMA is applied in our experiment.
The original algorithm is described in Numerical Recipes in
FORTRAN, 2nd edition, p. 676-679, ISBN 0-521-43064X,
1992. The Java version of LMA package version 1.2 is made
available by J. Holopainen and it is free for non-commercial
use. We have used Eclipse IDE for development and
debugging LMA. For monitoring performance, we use
jConsole plugin for Java. However, we have given explicit
instructions to run the code in command prompt.

A. Evaluation Metrics

The overall performance of individual classifier is
measured by

 (1)

In the test dataset, let E be the set of songs with year
prediction e, E' be the set of songs which are classified as year
e by the NN classifier, then we define the precision on years e
as:

 (2)

the recall on e as:

 (3)

and the F-measure on e as:

 (4)

which is a generalization of Fβ-Score below:

 (5)

B. Example: 100 songs dataset

Attributes: 100

Kappa Statistics: 0.25

Limitation: The dataset is too small to obtain a good neural
network classifier. The neural network constructed has only
31% accuracy in correctly classifying the output. However, it
can be used for the purpose of demonstrating the confusion
matrix and other measures of NN.

 Table 1 shows the measures calculated from the confusion
matrix obtained after training the neural network with 100
songs. The area of interest or area under the curve is obtained
by plotting a graph using TP Rate and FP Rate. This is called
the Receiver Operating Characteristic (ROC) curve.

TABLE I. DETAILED ACCURACY BY CLASS FOR 100 SONGS

DATASET

 TP
Rate

FP
Rate

Precision Recall F-
Measure

Class

 0 0 0 0.7209 0 1987

 0 0 0 0.7209 0 1989

 0.1 0.1 1 0.6976 0.8218 1992

 0 0 0 0.7209 0 1995

 0 0 0 0.7209 0 1996

 0.6666 0.1818 0.667 0.6744 0.6706 1997

 0.125 0.5 0.125 0.6976 0.212 1998

 0.125 0.1 0.125 0.6976 0.212 1999

 0.4615 0.4285 0.4615 0.5813 0.5145 2000

 0.3333 0.1667 0.3333 0.6744 0.4461 2001

 0 0 0 0.7209 0 2002

 0.75 0.2307 0.75 0.6511 0.697 2003

 0 0 0 0.7209 0 2004

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-11

57

 0.5 0.1 0.5 0.6976 0.5824 2005

 0 0 0 0.7209 0 2006

 0.2857 0.2857 0.2857 0.6744 0.4013 2007

 0.2667 0.4 0.2667 0.6279 0.3743 2008

 0.8889 0.3478 0.8889 0.5348 0.6678 2009

 0 0 0 0.7209 0 2010

Weighted
Average

0.2369 0.1495 0.2843 0.5752 0.2947

VI. RESULTS

TABLE II. EXECUTION TIME OF LMA WITH AND WITHOUT
PARALLELIZATION FOR VARYING DATASIZE

Sl. No. Data Size

(MSD)

Execution

Time of LMA

(ms.)

Execution Time

of LMA with

Parallelization

(ms.)

Speedup

1 100 261.76 464.11 0.564

2 500 1165.55 1280.77 0.91

3 1,000 2303.14 2385.65 0.9654

4 5,000 13145.76 6697.56 1.9627

5 10,000 39368.64 17164.32 2.2936

6 50,000 342924.76 142553.47 2.4055

7 1,00,000 1231735.58 368185.11 3.3454

Table II above describes the number of samples taken for

training the neural network, time taken by LM algorithm in the

sequential implementation, time taken by LM algorithm in

parallelized implementation and the speedup achieved.

VII. EFFECT OF INCREASING THE TRAINING DATA

It is noteworthy to observe that the traditional LMA

outperforms parallelized LMA when the sample dataset size is

100 to 1,000 although there is a gradual increase in the

performance of parallelized LMA. However, when the sample

dataset size is increased to 5000 the fork/join LMA gives

almost twice the gain in performance. The effect of increasing

the training data from 5,000 to 1,00,000 shows a steady rise in

performance in the parallelized LMA with respect to serial

LMA and obtain a speedup of 3.3454. This implies that the

parallelized algorithm works 334.54% faster than the original

LMA. To be sure, we ran the programs 100 times for each

sample size in both original LMA and parallelized LMA

mode. We calculated the representational average execution

time in each mode for different sample sizes.

VIII. DISCUSSION

Clearly we have two different scenarios:

1) When the sample size is less (between 100 to 1000),

the original LMA outperforms parallelized LMA and

2) When the sample size is more (over 1000), the

parallelized LMA outperforms original LMA

drastically as the size increases.

Fig 4. Change in speedup with change in data size for

parallelized LMA

The first scenario occurs because the overhead involved in

creating the thread pool is more in parallelized LMA with

respect to the size of the dataset. The scale of the dataset is too

small to hide the cost of thread initialization, and destruction,

etc.[3]

The second scenario clearly depicts the effective utilization of

parallel processing using threads where heavy computational

load is distributed among threads. Internally, Fork/Join

architecture implements work-stealing algorithm to distribute

workload to different threads that have completed but can be

used for executing other tasks before destruction. This avoids

in creation of few threads by reusing existing threads that steal

work from other de-queue. The computational cost involved in

calculating Chi2 value for each input vector array element is

cumbersome when the input data size becomes massive. The

partial derivative for each input vector value is calculated by a

thread (divide phase) and a cumulative result of the partial

derivatives of each thread is obtained later (conquer phase).

Although sometimes neural networks are trained using small

datasets, most-often they require large input data values to

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-11

58

accurately train a model. It has been estimated that Levenberg-

Marquardt algorithm is by far the fastest back propagation

algorithm existing for curve fitting problems in neural

networks. In our research, we have parallelized Levenberg-

Marquardt algorithm to optimize a neural network even faster

as the data size grows. We have implemented this algorithm in

Fork/Join architecture in Java to allow cross platform

compatibility.

IX. CONCLUSION

We have provided the entire code with embedded

documentation for parallelized Levenberg-Marquardt

algorithm using Java’s Fork/Join Framework.

http://sourceforge.net/projects/parallelizedlma/files/lma/lma%

20with%20threading.rar/download

This project is freely available to the research community for

academic purposes and to promote further research in this

domain.

In our research, we have achieved over 300% steady

performance gain by using thread level parallelization to

optimize and train a neural network using Levenberg-

Marquardt algorithm. The inherent problem of back-

propagation requires additional time to train a model and

usually it would require a large dataset. Levenberg-Marquardt

optimization gives a solution to finding the minimum least

squared error in a curve fitting plane. We try to estimate the

global minima using this algorithm. Since most of the time is

consumed in calculating the partial derivatives in the

CalculateChi2 function, we have implemented thread level

parallelization that uses Divide and Conquer technique to

fork() subtasks and eventually obtain the final result by

performing join() operations.

REFERENCES

[1] G. Lera, M. Pinzolas, “A quasi-local Levenberg-Marquardt algorithm

for neural network training”, in Neural Networks Proceedings, 1998.
IEEE World Congress on Computational Intelligence. The 1998 IEEE
International Joint Conference on (Volume:3), pp. 2242–2246 vol.3.

[2] Z. Zhao, H. Xin, Y. Ren, X. Guo, “Application and Comparison of BP
Neural Network Algorithm in MATLAB”, in Measuring Technology
and Mechatronics Automation (ICMTMA), 2010 International
Conference on (Volume:1), pp. 590–593.

[3] L. Zhang, Y. Zhao, K. Hou, “The Research of Levenberg-Marquardt
Algorithm in Curve Fittings on Multiple GPUs,” in Trust, Security and
Privacy in Computing and Communications (TrustCom), 2011 IEEE
10th International Conference on, pp. 1355–1360.

[4] A. Reynaldi, S. Lukas, H. Margaretha, “Backpropagation and
Levenberg-Marquardt Algorithm for Training Finite Element Neural
Network,” in Computer Modeling and Simulation (EMS), 2012 Sixth
UKSim/AMSS European Symposium, pp. 89-84.

[5] J. Li, “The application and modeling of the Levenberg-Marquardt
algorithm,” published in e-Business and Information System Security
(EBISS), 2010 2nd International Conference, pp. 1-3.

[6] G. Lera and M. Pinzolas, “Neighborhood Based Levenberg–Marquardt
Algorithm for Neural Network Training,” in Neural Networks, IEEE
Transactions on (Volume:13 , Issue: 5), Sep 2002, pp. 1200–1203.

[7] M.I.A. Lourakis and A. A. Argyros, “Is Levenberg-Marquardt the Most
Efficient Optimization Algorithm for Implementing Bundle
Adjustment?,” Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference (Volume:2), pp. 1526–18531 Vol2, 2005.

[8] H.P. Gavin, “The Levenberg-Marquardt method for nonlinear least
squares curve-?tting problems,” Duke University. 2013.

[9] K. Levenberg, “A method for the solution of certain problems in least
squares, Quart. Appl. Math., 1944, Vol. 2, pp. 164–168.

[10] D. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM J. Appl. Math., 1963, Vol. 11, pp. 431–441.

[11] M.I.A. Lourakis, “A brief description of the Levenberg-Marquardt
algorithm implemented by” levmar, Technical Report, Institute of
Computer Science, Foundation for Research and Technology- Hellas,
2005.

[12] Ranganathan A., “The Levenberg-Marquardt Algorithm”, 2004.

[13] Demuth H., Beale M., Hagan M., “Neural Network Toolbox 6 – User
Guide,” The MathWorks, Inc.

[14] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul
Lamere. The Million Song Dataset. In Proceedings of the 12th
International Society for Music Information Retrieval Conference
(ISMIR 2011)

Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-028-6 doi: 10.15224/ 978-1-63248-028-6-01-11

http://sourceforge.net/projects/parallelizedlma/files/lma/lma%20with%20threading.rar/download
http://sourceforge.net/projects/parallelizedlma/files/lma/lma%20with%20threading.rar/download

