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Abstract— In this work we study the diffusion of a toxic gas in 

a tunnel due to an explosion. The aim is to to realize a control 

system for identification and immediate containment procedures. 

To this end, many aspiration pumps are turned on to mitigate the 

effects. The model utilizes the diffusion partial differential 

equation with non-homogeneous terms for the aspiration pumps.   
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I.  Introduction 
In a previous paper [1]   the diffusions of toxis gases in a tunnel 

was studied to better design a mechanism of containment. Our 

study analyzed the diffusion mechanism in detail. In this 

contribution, this result is generalized by using a Laplace 

transform mechanism.  

   The project is interesting for security reasons and for control 

of terrorist events. This study is intended as a mechanism for 

decision support and consider. In a first instance, some aspects 

of the events occurred in the terrorist attack on the Tokyo 

subway in 1995. We wish to to try to identify some useful 

elements for prevention, containment and development of 

specific intervention procedures. The purpose of the research is 

to study the potential behaviors of a possible neurotoxin 

chemical agent diffusion (such as a nerve gas) in a public 

place (a subway), to monitor and define the propagation 

models. We wish to identify certain constants and parameters 

that inserted in complex models may allow precise monitoring 

of diffusion processes for toxic gases propagation in a tunnel. 

Usually the detection of contamination is carried out in 

large part to events always present. Active network, which 

continuously detects air quality, are rare and expensive. The 

results of the study may be useful to design systems with fixed and 

mobile sensors networks, to monitor and allow rapid   

detection, risk assessment, and immediate detection of 

procedures for containment and remediation. 

The paper examines so the spread of a toxic agent in order to 

realize a control system— via a wireless network of active 

sensors—for identification and immediate containment 

procedures.  
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Because of the explosion in the tunnel, we suppose that one or 

more aspiration pumps is turned on to mitigate the effects of 

the terroristic act. Unlike the case of systems described by 

ordinary differential equations, whose control theory has come to 

an advanced level of understanding, the nature of the infinite-

dimensional systems described by PDE makes difficult to solve 

control problems and estimates identification for this class of 

systems. 

 

II. The Single Pump Model and 
the Analytical Solution 

We consider a tunnel with a z-coordinate chosen along its axis. 

Cylindrical coordinate are chosen and r, θ span the transversal 

cylindrical region. We suppose that, at t = 0 in the origin, an 

explosion of toxic gas occurs. At b meters on the right of the 

explosion point, we suppose that a aspiration pump is present 

and an electronic device immediately turns it on. We assume 

that the dependence on θ is not relevant, and so, we consider 

an axisymmetric problem; so doing we denote with C(r, z, t ) 

the concentration of the toxic gas generated by the explosion. 

This working hypothesis does not take into account of some 

effects: e.g. real geometry of the tunnel, weight, humidity. We 

assume that the concentration will obey the following partial 

differential equation [2,3,4]:  

 

   

   
 

 

 

  

  
 

   

   
 

 

 

  

  
              

      

 
 

 

 

where D is the diffusion coefficient. We assume also that the 

radial coordinate r verifies  0 ≤ r ≤ R, where R is the tunnel 

radius and −∞ <z < ∞ [1-3]. 

    The right term of this equation models an aspiration pump 

placed in z = b, r = 0. A coefficient p is introduced to consider 

the real aspiration power of the pump while generalized δ Dirac 

functions in z = b, r = 0 are used to model the idea that, in this 

point, there is a negative source term whose intensity effect is 

proportional to the local concentration already there present. 

 

Initial and boundary conditions have to be set in order to solve 

this partial differential equation. To this end, we assume the 

following ―initial condition‖ 
  

   
    

          
         

 
 

 

to model the initial explosion in z = 0, r = 0. 
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Concerning boundary conditions, we assume, null flux across 

the tunnel boundary in r = R: 

 
         

  
   

In this boundary region, our problem is of the Neumann kind. 

Concerning asymptotic requirement per ―large‖ z, we assume 
 

   
    

            

 

A discussion on the radial dependence in now required. Since 

Neumann boundary condition holds for r = R, it is obvious that 

the radial dependence is now assumed. However, one can ask if 

the simplifying hypothesis C(r, z, t) = C(z, t) is possible. To this 

end, we study firstly the well know problem when no 

absorption pumps are present. In this case, we quickly consider 

equation 

 

   

   
 

 

 

  

  
 

   

   
 

 

 

  

  
   

 
with the same initial conditions.  We firstly use a cosine Fourier 
transform 

         ∫                   

  

  

 

 

and then a Dini Bessel expansion [5,6]. In this way, we are 
able to get the final solution satisfying the correct boundary and 
initial data. It is: 
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Where the ―free‖ solution is  

          
 

 √   
  

  

     

In this expression, we have denoted with         the s-th Bessel 

function of the first kind and with   
   

  the –zeros of this 

functions. In this expression s=0. 

By observing this equation, one recognizes that the effect of 
taking into account the radial dependence is simply the 
introduction of an additive ―modulation factor‖ expansion  
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Each term of this expansion has null integral on the section 0 
≤ r ≤ R. Even if the radial dependence is not negligible, we wish 
to study the medium quantity 
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and concentrate our attention on the role of the aspiration pumps. 
For this motivation, we assume a model where the concentration 
depends only on z and t and so we ignore the radial dependence. 

In a radial framework, we consider the following partial 
differential equation: 

        

   
 

 

 

       

  
               

 

With the boundary condition 
 

   
    

          

and initial data 
 

   
    

              

 

Again, we use Fourier transform technique: 

       ∫               

  

  

 

and we get the following differential equation for a(q,t) :  

 

       

  
                                   

This equation is linear and can be solved in a standard way. By 
substituting the solution in the Fourier transform, one get, after 
some manipulation: 
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This equation is the generalized Abel equation of the second 
kind. Its solution is present in the literature [7]. Its solution, 

that now we denote with             - since, at this stage, there 
is only one aspiration pump -  is: 

                        |   |    

where we have set: 
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The term F(z,p) is the correction term due to the aspiration pump, 
with respect to the free solution.  In this expression we have 
denote with erfc(x) the complementary error function [5]. 

III. The Multi Pumps Model   
 

In this section we suppose that many aspiration pumps, of equal 

power p, are used to mitigate the diffusion of the toxic gas.  

We consider therefore the following partial differential equation: 
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Concerning boundary and initial conditions, we assume the 

same ones of the previous section. 

If we repeat the same technique of the previous section, we 

arrive to the following integral equation 
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This equation is a generalization of the Abel equation discussed 

in the previous section. Unfortunately, no known solution of 

this equation is present in the literature.  

For this motivation, in this contribution, we start studying the 

case of only two aspiration pumps placed in z=b and z=u, 

respectively by adopting a Laplace transform technique. We set 

 

 and, so doing,  we get: 
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In this equation, the control terms in z=b and z=u are explicitly 

present. Now by substituting z=b and z=u, we get a system of 

equation in which the ―control close loop‖ is exactly open. This 

system reads: 
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Now we solve and get 
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These equations furnish the Laplace transform of the required 

concentration in the correspondence with the aspiration pumps. 

Now the inverse Laplace transform can be calculated. We 

perform this calculation in a numerical way to obtain the 

possibility to present a plot. We compare the concentration in the 

point z=u, in two different models: in the first case only a single 

aspiration pump in z=b is present. In the second case two 

aspiration pumps are present, in z=b and z=u respectively (recall 

that we assumed u>b). One can obtain an estimate of the 

absorbion process and a reduction, in the plot, of about 40% on 

the presence of toxic gas.  

Some plots and numerical evidence suggest that this behavior is 

present also for a greater numbers of aspiration pumps. 

This research will be further developed to better design a control 

mechanism for the mitigation process. We think that an 

automated sensor mechanism can be useful to protect sensible are 

from terroristic acts. This includes intelligent agents based on IA-

CGF  (Intelligent Agent Computer Generated Forces) [8,9]. 

 
Figure 1. The diffusion of a toxic gas in the point z=u, with 

and a without a second aspiration ump in z=u. 
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