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Abstract—In this paper, we discuss the existence of positive 

solutions for nonlocal q-integral boundary value problems of 

fractional q-difference equations. By applying the generalized 

Banach contraction principle, the monotone iterative method, 

and Krasnoselskii's fixed point theorem, some existence results of 

positive solutions are obtained. 
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1. Introduction 

The q-difference calculus or quantum calculus is an old 

subject. Studies on q-difference equations appeared already at 

the beginning of the twentieth century in intensive works 

especially by Jackson [1], Carmichael [2] and other authors 

such as Poincare, Picard, Ramanujan.  

Up to date, fractional differential equations have evolved 

into a multidisciplinary subject, for example, see [3–30] and 

the references therein.  

For some recent work on q-difference equations and 

fractional q-difference equations, we refer the reader to the 

papers [7–18, 20, 24, 29, 30], and basic definitions and 

properties of q-difference calculus can be found in the book 

[19]. The fractional q-difference calculus had its origin in the 

works by Al-Salam [20] and Agarwal [21].  

Ahmad, Ntouyas, and Purnaras [10] studied the following 

nonlinear fractional q-difference equation 

( ) ( , ( )),0 1,1 2,C qD u t f t u t t      

1 1 1 1(0) (0) ( )qa u b D u c u   ,

2 2 2 2(1) (1) ( ),qa u b D u c u    

where C qD  is the fractional q-derivative of the Caputo type.  
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The existence of solutions for the problem is shown by 

applying some well-known tools of fixed point theory such as 

Banach’s contraction principle, Krasnoselskii’s fixed point 

theorem, and the Leray-Schauder nonlinear alternative. 

In this paper, we deal with the following nonlocal q-

integral boundary value problem of nonlinear fractional q-

derivatives equation: 

 

( ) ( , ( )) 0,C qD u t f t u t     (0,1),t  (0) 0,u          (1.1) 

( 1)
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( )
(1) ( ) ( )

( )
q q

q

qs
u I u u s d s




 
  




 

 , 

where 

(0,1),q 2 3,0 2,0 1, 0,         
C qD is 

the q-derivative of Caputo type of order α, ( , )f C R R  . 

In the present work, we gave the corresponding Green’s 

function of the boundary value problem and its properties. By 

using the Krasnoselskii’s fixed point theorem, some existence 

results of positive solutions to the above boundary value 

problems are enunciated. 

 

2. Preliminaries 
 

The following formulas will be used later, namely, the 

integration by parts formula 
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where 
t qD denotes the derivative with respect to the variable 

t . 
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Definition 2.1 Let 0  and f  be a function defined on 

[0,1]. The fractional q-integral of Riemann-Liouville type is 

    0 ,qI f x f x  
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,

x

q q

q

I f x x qs f s d s








 
   

 0, 0,1 ,x    

Definition 2.2 The fractional q-derivative of the 

Riemann-Liouville type of order 0  is defined  

    0 ,qD f x f x  

        q q qD f x D I f x
   

 , 

where [ ] is the smallest integer greater than or equal to  . 

Lemma 2.3  Assume that 0  and ,a b t   then 

 
 

 
 

.t a t b
 

    

Lemma 2.4   , 0Let    and f be a function defined 

on [0,1]. Then the following formulas hold  

      ,q q qI I f x I f x     

    .q qD I f x f x    

Lemma 2.5  Let 0  and n be a positive integer. Then 

the following equality holds: 

     n n

q q q qI D f x D I f x   
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Lemma 2.6 Let  1,R    ， ,  

the following is valid: 
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0 a t b   . 

Lemma 2.7 Let 
2(3 ) (3) 0q qM          . 

Then, for a given  0,1h C , the unique solution of the 

boundary value problem  

( ) ( ) 0, (0,1),2 3,c

qD u t h t t       

subject to the boundary condition 

(0) 0, '(0) 0,u u   
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Proof:  ( ) ( )c

qD u t h t   ⇔ ( ) ( )c

q q qI D u t I h t    . 

We have 
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Lemma 2.8 The function ( , )g t s  satisfies the following 

properties: 

( , ) 0, ( , ) ( , )g t qs g t qs g qs qs   0 , 1t s   

Lemma 2.9 The function ( , )G t qs  satisfies the 

following properties: 

(i) G  is a continuous function and 

 ( , ) 0,G t qs   for ( , ) [0,1] [0,1].t s     

(ii) There exists a positive function ((0,1),(0, ))C  , 

such that 
0 1
max ( , ) ( ),

t
G t qs s

 
 where 

( ) ( , ) ( , ), (0,1).s g qs qs H qs s
M


     

3. Main Results 

Let [0,1]X C  be a Banach space endowed with the norm 

‖u ‖ x =max 0 1t  ∣ ( )u t ∣. 

Define { , ( ) 0,0 1}P u X u t t     , Define the 

operator :T P X  as follows:： 
1

0
( , ) ( , ( )) .qG t qs f s u s d s( Tu) ( t ) =                 （3.1） 

It follows from the nonnegativeness and continuity of G and f 

that the operator :T P X  satisfies ( )T P P  and is 

completely continuous. 

Theorem 3.1  Suppose that there exists 0<ξ1 <ξ2 such 

that (Hf) 2( , ) :[0,1] [0, ]f t u R  is continuous and 

nondecreasing relative to u , and 

2 2
0 1
max ( , ) ,

t
f t L 

 
                             （3.2） 

1 2
1 1min ( , ) .

t
f t l

 
 

 
                              （3.3） 

Then the BVP (1.1) has one positive solution 
*u  satisfying 

*

1 2 ,u      

and   
*

0 0 2lim , ( ) .m

m
T u u u t 


   

Proof：We denote 1 2 1 2[ , ] { : }u P U        . 

In what follows, we first show that T : 

1 2 1 2[ , ] [ , ]     . 

Let 1 2[ , ],u    then 0<ξ1≤ ( )u t ≤‖u ‖X≤ξ2。  

By assumption (Hf), we have 

2 2 2
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Thus, we get 1 2 1 2: [ , ] [ , ]T      . 

Let 0 2,( ) 0 1,u t t    then 0 1 2[ , ].u    

 Let 1 0( ) ( ),u t Tu t  then 1 1 2[ , ].u   We denote  

1

1 0 , 0,1,2,m

m mu Tu T u m

     

According to 1 2 1 2: [ , ] [ , ]T      , we have  
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Since T  is completely continuous, we assert that 
1{ }m mu 


 

has a convergent subsequence 1{ } ,
km ku 

 there exists  

1 2[ , ].u    

Such that 
*lim
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Since 1 1 2[ , ],u    then 

1 1 1 2 0u u u      . 

According to the definition of T  and ( fH ), we have 
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which implies  2 1 0 1( ) ( ) ( ),0 1.u t Tu t Tu u t t       

By introduction, we have 1( ) ( )m mu t u t   for 

0 1,t  0,1,2,m   

Thus, there exists 1 2[ , ]u    such that lim .m
m

u u


  

From the continuity of T  and 1 ,m mu Tu   we have  

.u Tu    

The proof is completed. 

Our next existence result is based on Krasnoselskii’s 

fixed point theorem. 

Lemma 3.2（Krasonselskii’s）Let E be a Banach space, 

and let PE be acone. Assume Ω1, Ω2 are open subsets of E 

with
-

1 1 2    and let T : 2 1( \ )P P


    be 

a completely continuous operator such that  

 Tu u ,
1,u P   Tu u ,

2.u P   

Then T has at least one fixed point in 
-

2 1( \ )P   . 

Theorem 3.3 Let ( , )f t u be a nonnegative continuous 

function on [0,1]×R*.In addition, we assume that 

(H1) There exists a positive constant 
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1( , )f t u kr ,     3 4 1( , ) , 0, ,t u r    

where 3

3

m
q  , 4

4
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(H2) There exists a positive constant 2r with 2 1r r  such that 

1( , )f t u kr ,    2( , ) 0,1 0,t u r  , 

Then the BVP (1,1) has at least one positive solution 0u  

satisfying 1 0 20 r u x r   . 

Proof:  By Lemma 2.8,we obtain that 

0 1max ( , ) ( , )t g t qs g qs qs   . 

Let  
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For any 1u X  , according to (H1) and the definitions 

of 3 and 4 , we obtain 
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Let  
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Now, an application of Lemma 3.2 concludes the proof. 
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