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Abstract— The aim of this short research note is to provide a 

new and interesting hypergeometric identity by applying the well 

known beta integral method which was used successfully and 

systematically by Krattenthaler and Rao in their well known and 

very interesting research paper.  

The identity is derived with the help of an extension of a 

quadratic transformation obtained very recently by the authors. 
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I.  Introduction 
We begin by recalling the following quadratic 

transformation formula due to Kummer [4] 
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This result was independently re-discovered by Ramanujan 

[1, Entry 2, p. 49]. 

 

Using (1.1) and by applying the so-called beta integral 

method, recently Krattenthaler and Rao [3, Eq. (3.4), p. 64] 

obtained the following interesting identity 
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provided a2  or b  be a non-positive integer. 

 
Recently, Kim, et al. [2] have given an interesting 

extension of Kummer’s quadratic transformation (1.1) in the 
form 
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Very recently, another extension of the Kummer 

transformation  (1.1) was given by Rakha, et al. [5] in the form  
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where 
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The aim of this short research note is to provide a new and 
interesting hypergeometric identity by applying the so-called 
beta integral method to the extension of the quadratic 
transformation formula (1.3). The identity (1.2) obtained 
earlier by Krattenthaler and Rao follows special cases of our 
main findings. 

II.  A New Hypergeometric Identity 
Our main identity to be proved in this short research note is 

given in the following theorem. 

Theorem 2.1 If at least one of  a2 , e or d  is a non-positive 

integer, then  the following identity holds true: 
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Proof. In order to establish the identity (2.1), we proceed as 

follows. Let us assume that a2  be a non-positive integer, say 

ma =2 , where m  is a positive integer. Now multiply the 

left-hand side of (1.4) by 
11 )(1   efe xx , where we suppose 

temporarily that 0>)(>)( eRefRe  and integrating the 

resulting equation with respect to x  from 0  to 1  and 

denoting it by 1S , we have 
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Expressing 23 F  as a series, changing the order of 

integration and summation (which is easily seen to be justified 

due to uniform convergence of the series involved in the 

process), we have 
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Evaluating the Beta integral and using the elementary identity 
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we have after some algebra  
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summing up the inner series, we have 
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In the same manner, multiply the right-hand side of 

(1.4) by 
11 )(1   efe xx  and integrating the resulting 

equation with respect to x  from 0  to 1  and denoting it by 

2S  and then proceeding exactly as we have done above, we 

finally have after some simplification: 
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                                                                                             (2.3) 

Finally, equating (2.2) and (2.3), we easily arrive at the desired 

result (2.1).  Exactly the same process can be done in case of 

e or d . This completes the proof of our theorem.  

We conclude this section by remarking that the above 

restrictions on the parameters e  and f  may now be appeal to 

analytic continuation. 

 

Corollary 2.2  In our theorem, if we set bd 2= , then at once 

recover Krathenthaler and Rao result (1.2). Thus our result 

(2.1) may be regarded as an extension of (1.2). 

 

Remark:  For an interesting generalization of  Krattenthaler 

and Rao identity (1.2), see a recent paper by Ibrahim, et. al. 

[6]. 
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