

174

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-59

Principles of Recursive Residue Number System

Computation
A.L. Stempkovsky, V.M. Amerbaev, R.A. Solovyev, T.Y. Isaeva, E.S. Balaka,

D.V. Telpukhov

Abstract — New method is proposed which is based on the

idea of expressing system of residue numbers of traditional

Residue Number System (RNS) using lower dimension system of

sub-moduli. This new recursive data representation allows

eliminating some of the known drawbacks of RNS arithmetic.

Despite the constraints imposed on moduli sets, the proposed

method provides speed gain, as experiments show, and it can be

used in parallel high speed computing devices.

Keywords — Residue Number System, Residue arithmetic,

Chinese Remainder Theorem

I. Introduction
This paper presents development of some constructional

ideas which were presented as generalized schematic model in
useful model patent [1]. In computer science history there
were cases when required speed performance and reliability
[2, 3] could not be efficiently provided for specialized devices
design with the means of traditional positional binary
arithmetic. At the same time, this problem could be solved by
means of RNS computation. RNS arithmetic is not a universal
method of calculator design, however, it is irreplaceable for
some specialized applications. Therefore, it keeps attracting
interest throughout many past decades. Research results, that
could help overcome RNS disadvantages and widen its
application field, are constantly published, actually, there
exists separate research area dealing with this problem [4-7].

There are well-known advantages of RNS arithmetic as

applied to digital signal processor (DSP) design:

 natural parallelism of computing;

 self-test and fault correction ability.

Also the following disadvantageous properties of RNS are

known:

1) big overhead (usage of forward converters from

conventional notation to RNS representation, and

reverse converters);

2) representation of modular operations using operations

of positional (binary) arithmetic that leads to area

redundancy during implementation;

A.L. Stempkovsky , V.M. Amerbaev , R.A. Solovyev, T.Y. Isaeva,
E.S. Balaka, D.V. Telpukhov

The Institute for Design Problems in Microelectronics of the Russian

Academy of Science

Russia

3) non-uniformity of modular calculators concerning

their complexity and operation time (performance);

4) absence of due CAD support for design of RNS

calculator devices (by systems of structural

synthesis)[8].

The first disadvantage can be leveled if comparatively

complex calculators are designed. As hardware cost of

converters is restricted by design rules (project limits), this

overhead can be lessened with the growth of total design

complexity. The same is applicable to time expenditures.

The fourth disadvantage can be mastered by the usage of

so-called IP-generators – program modules that produce RTL

level synthesizable behavioral description of devices carrying

out certain RNS (or maybe non-RNS) procedures.

There are no known methods of the essence to jump over

the second and the third disadvantages. It is exactly these

difficulties that our new approach to RNS calculator design,

which is named recursive RNS arithmetic, is aimed to master.
Ideas proposed in this paper are based on the principles of

deep paralleling of modular operations of RNS with moduli
set p1, p2,…, pn by reducing of modular operations for each of
the used moduli pi (i ≤ j ≤ n) to modular computations using
the previous used moduli p1, p2,…, pi-1, which have this or that
technological advantage (e.g., small bit width). We will refer
to the latter as basic moduli. Note that the mentioned reduction
is possible only if the so-called condition of calculation limits
matching for each of the used moduli pi with calculation limits
of the corresponding sets of basic moduli, is true. The
principle of calculation limits matching guarantees, first,
isomorphism of ring operations for their corresponding sets of
basic moduli; second, possibility of reversion of each step of
recursion by conversion of corresponding RNS basic moduli
codes to positional code (e.g., basing on Chinese remainder
theorem, or by their transformation to Mixed-Radix system).

II. The idea of recursive RNS
Let us explain procedure of recursive conversions using

the following simple example. Take two-bit prime integers
p1= 2, p2= 3 as basic moduli. It is evident that any modulo 5
residue has unique representation by moduli 2 and 3. At the
same time, residues for moduli 2, 3 and 5, where modulo 5
residues are expressed via moduli 2 and 3 residues, can
uniquely represent any modulo 29 residue. Residues for
moduli 2, 3, 5 and 29 can uniquely represent any modulo 863
residue. And so on, until we get the required set of used
moduli: 2, 3, 5, 29, 863,... This example clearly illustrates the
following 4 facts:

175

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-59

 Complexity and time use of number conversion using
basic moduli 2 and 3 are approximately equal (bit
width equals 2 for both basic moduli);

 Higher degree of paralleling is achieved;

 Regularity is improved (all calculators use moduli 2
and 3);

 Small bit width for basic moduli provides effective
combinational implementation of modular operations
for these basic moduli.

In reality not all these features are as good as they appear
to be at the first glance. Actually, there are several constraints
to be applied which add to complexity of devices designed
using the proposed methodology. Let us consider these
constraints.

Let be the set of basic moduli p1, p2,…, pm, and modulo
pm+1 residues are to be expressed using this set of basic
moduli. It is obvious that the maximal modulo pm+1 residue is
max = pm+1−1. Knowing this value and the sequence of
operations to do, maximal value MAX of arithmetic operation
result can be estimated. Clear that for unique representation of
arithmetic operation result it is necessary that MAX <Q, where
Q= p1∙p2∙…∙pm. For the rest of moduli the same estimation
procedure applies.

Now consider the previous example for the basic moduli 2
and 3. In this case Q = 2∙3 = 6. Minimal prime integer (after 2
and 3) is 5 (max = 4). We cannot implement neither addition
because 2∙max > Q (8 > 6), nor multiplication, as max

2
 > Q

(16 > 6). To implement any of these arithmetic operations
(addition or multiplication) value Q should be increased (that
is, number or/and value of basic moduli should be increased).
Consider the following set of basic moduli: all mutually prime
3-bit integers, i.e. 4, 5 и 7. In this case Q = 4∙5∙7 = 140.
Condition necessary to provide MAX < Q for multiplication is

max
2
 < Q , in other words, Qpi 1

 (pi−1 < 11,8). Set pi=11

(prime integer nearest to 7). Generation of basic moduli can be
easily continued using the same procedure until the required
computational range is achieved.

Finally consider a problem from practice. Let we have to
implement Fourier transform for 24-bit arguments and 1024
nodes. To do this, the sum of 1024 products should be
calculated, that is, the following constraint should hold:
1024∙max

2
 < Q. For this task a set of 3-bit basic moduli is not

enough. Let us add 4-bit moduli to the basic set: 5, 7, 8, 9, 11
and 13 (Q = 360360). To chose the nearest used modulus it is

necessary that
1024

1
Q

pi . That is, we get pi−1<32 . Let

pi=31. Use the same estimation procedure to generate the
whole tree of the used moduli. To implement such device, a
block of 6 calculator units (one for each basic modulus) should
be designed. 16 of these units are required. That is where
regularity comes in useful. Note that all calculators are
extremely fast for modular operations (due to super-
paralleling) and low area usage due to small values of basic
moduli or their closeness to power of 2 numbers.

As such, the proposed method of recursive RNS
calculation provides the following advantages:

 Elimination of non-singularity for operating small
and large moduli (cost (area) and performance are
approximately the same for all moduli, as, ideally,
they should have the same bit width).

 Sufficiently higher degree of paralleling resulting in
better speed performance.

 Regularity appears (great number of equal moduli are
used).

 Small bit width of basic moduli allows for modular
operations implementation by combinational circuits
optimized in Boolean basis.

III. Data representation and main
operations of recursive RNS

Recursive RNS is based on the following idea: express the
moduli set in terms of set of smaller dimension sub-moduli.

Figure 1. Recursive RNS hierarchy

Consider moduli set p1, p2,…, pi,…, pn and a vector
A=(a1, a2,…,an). Let us express ai in terms of sub-moduli set
(pi,1, pi,2,…, pi,k) , where Pi= pi,1 ∙ pi,2 ∙ ∙…∙ pi,k and ai < Pi:
ai = (ai,1, ai,2,…, ai,k). Then vector A can be expressed as
follows: (a1,a2,…,ai−1,(ai,1, ai,2,…,ai,k),ai+1,…,an) ,
see Figure 1. Let us name the set of the first m moduli the
basic moduli set, and denote their product Q = p1 ∙ p2 ∙…∙ pm.
Let pi,1 = pi, pi,2 = p2,…, pi,i−1 = pi−1, and k = i−1, then for
i = m+1,…,n recursion takes place. The i-th element
ai = (a1, a2,…, am, am+1,…, ai−1) for moduli set p1, p2,…, pm,
pm+1,…, pi−1 or, expanding recursion, we get:
ai=(a1,a2,…,am,(am+1,1,am+1,2,…,am+1,m) ,…). Figure 2 shows a
special case of element ai decomposition for n = 6 and m = 3.

А

pn

pi

p2

p1

pi,k

pi,2

pi,1

176

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-59

Figure 2. Recursive decomposition of element p6 using sub-moduli

set (p1, p2, p3)

A. Forward conversion of positional
number notation to recursive RNS
notation.
While in traditional RNS arithmetic number of vector

elements is equal to the number of moduli set elements, in
recursive RNS arithmetic number of vector elements grows as
function of n and m.

Clear that any of the first m elements is presented by a
single number. m+1-th element contains m elements, as it is
expressed by m elements of submoduli set:
am+1=(am+ 1,1,am+1,2,…,am+1,m). m+2-th element contains 2∙m
elements, as it is expressed by m elements of sub-moduli set
and m elements of vector am+1. Thus, we come to conclusion
that the number of elements Li for vector ai can be expressed
by the following formula:

 .,2

,,1

1 nimm

mi
L

mii

(1)

The total number L for vector A can be evaluated using
geometric series formula [9]:

 mmmmLL mn
mn

mn

i

 2

12

12
12...22 110

(2)

Consider a numeric example. Consider the moduli set: p1,
p2, p3, p4, p5 = (2, 3, 5, 29, 863). P = 2∙3∙5∙29∙863 = 750810.
Check the condition: 2∙3 > 5, 2∙3∙5> 29, 2∙3∙5∙29 > 863.
Choose basic moduli set (p1, p2). Then Q = p1∙p2 =6, n = 5,
m=2. Number of vector elements is: L = 23∙2 = 16.

Decompose number A = 865 written in positional notation
to traditional RNS basis vector: A = (|865|2, |865|3, |865|5,
|865|29, |865|863) = (1,1, 0, 24,2).

Now decompose number A for recursive RNS basis:

 2,0,2,0,2,0,2,0,1,0,0,0,0,0,1,1865,865

,865,865,865,865,865,865

,865,865,865,865,865,865,865,865

3529863
2529863

329863
229863

35863
2586338632863

3529
2529329229352532

A

As all numbers in the resulting vector do not exceed 3, the
needed storage capacity is 16∙2 = 32 bits, instead of 20 bits for
positional notation number storage. Amount (coefficient) of
redundancy is 1.6. Fig. 3 illustrates this example.

Figure 3. Number decomposition for recursive RNS basis (2, 3, 5, 29, 863)

using basic moduli set (2, 3)

B. Basis choice restrictions
Maximal value that can be presented in terms of pm+1 is

max = pm+1−1. To enable arithmetic operations for certain
numbers operation result for element pm+1 should not exceed
Q=(p1 ∙ p2 ∙…∙ pm). This value equals 2∙max for addition and
max2 for multiplication.

Look upon the following example. Consider basis (2, 3, 5).
We take the basic moduli set (2, 3). In this case Q = 2∙3 = 6,
max = 4. As addition requires maximal representable number
8, that is greater than 6, and multiplication requires number
16, that is also greater than 6, this basis is inappropriate for
basic arithmetic operations even though it can be used for one-
to-one number decomposition. For practical needs value of Q
should be increased.

How to choose basic elements? Consider the following
example. Consider basic moduli set (4, 5, 7). The element p4
should be chosen so that the resulting recursive basis enables
multiplication.

8.121140

11max

44

4

2

4

2

pp

QppQQMAXQ

Thus, we can add p4 = 11 to recursive basis.

A

p6

p5

p4

p3

p2

p1

p5

p4

p3

p2

p1

p4

p3

p2

p1

p3

p2

p1

 A

863

29

5

3

2

29

5

3

2

5

3

2

3

2

2

1

1

177

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-59

C. Reverse number conversion from
recursive RNS notation to positional
notation
Reverse conversion needs recursive implementation based

on the same method that is used for conversion of traditional
RNS vector to positional notation number.

Consider arbitrary vector A = (a1, a2,…, an). It is known for
RNS that A = (a1, a2,…, an) = (a1,0 ,…,0) + (0, a2 ,…,0) +…+

+(0,0 ,…, an) =

P

i

n

i

i Ba
1

, where B0=(1,0 ,…,0) ,

B1=(0,1 ,…,0) ,…, Bn=(0,0 ,…,1) is a system of orthogonal
bases [10].

For recursive RNS a set of orthogonal bases should be
found for the following residue number systems:
(p1, p2,…, pm) , (p1, p2,…, pm+1),…, (p1, p2 ,…, pn) .

View one more example. Consider basis (3, 5, 7, 11, 13)
and basic moduli set (3, 5, 7). Let us convert vector
(1, 2, 1, (0, 3, 3), (0, 1, 6,(0, 1, 6))) to positional notation. For
reverse conversion we have to find orthogonal bases for each
of the following residue number systems:

.6930;1365

;10725;6006

;500513,11,7,5,3

;210;330

;231;38511,7,5,3

;151,0,0;210,1,0

;700,0,1)7,5,3(

5,34,3

3,32,3

1,33

4,23,2

2,21,22

3,12,1

1,11

BB

BB

BS

BB

BBS

BB

BS

The process of reverse conversion is shown at fig.4. In
positional notation the given vector is presented as 13357.

Figure 4. Process of vector converse reversion

D. Addition and multiplication in
recursive RNS arithmetic
If constraints hold for a basis (see paragraph 3B), then

number addition and multiplication are done similar to
traditional RNS arithmetic. To add (multiply) two numbers,
corresponding vector elements should be added (multiplied)
modulo pi. As all vector elements are small and use few digits,
parallel addition (multiplication) is very fast.

IV. Experimental results
After the text edit has been completed, the paper is ready

for the template. Duplicate the template file by using the Save
As command, and use the naming convention prescribed by
your conference for the name of your paper. In this newly
created file, highlight all of the contents and import your
prepared text file. You are now ready to style your paper; use
the scroll down window on the left of the MS Word
Formatting toolbar.

Experiments were done to compare speed performance of
scalar multiplication of vectors for three different
implementations: first, positional notation; then, traditional
RNS basis notation; and, finally, recursive RNS basis notation.

Device models were implemented by means of digital
Integrated Circuits design flow using standard cell libraries.
The chosen flow includes Verilog HDL behavioral description
of the device; Synopsys Design Compiler logic synthesis
tools; Synopsys PrimeTime static timing analysis tools;
standard cell library Nangate Open Cell library for 45nm
design rules.

In the designed recursive RNS device forward conversion
is implemented as pipeline, thus, forward conversion delay for
given parameters is always less than the delay for the main
body of scalar multiplication. Reverse conversion takes rather
a long time, however, even for the most difficult cases it is
finished long before a new portion of data comes to input of
the reverse converter unit, due to the fact that the number of
clock cycles assigned for reverse conversion is equal to the
number of vector elements.

Thus, the device frequency is defined by the maximal
delay unit, i.e., the main body of scalar multiplier.

Let each vector consist of 1024 elements and have 20-bit
arguments. Then the sum of 1024 products is to be calculated,
i.e., the following condition must hold: 1024∙max

2
 < Q. To

provide this, 3-bit basic moduli set is not enough. Let us add
4-bit moduli: 5, 7, 8, 9, 11 and 13 (Q = 360360). Use formulas
from p.4 to chose the nearest modulo value. We get p7 < 18.
Chose p7 = 17 . Construct the whole moduli tree using this
algorithm: (5, 7, 8, 9, 11, 13, 17, 73, 659, 16963). To
implement device for this moduli tree, a unit (block)
containing 6 calculators (one for each basic modulus) should
be designed. 16 of these units are required. This is where
regularity comes in useful. Note that all calculators are
extremely fast (due to super-paralleling) and low cost (area
usage) due to small values of basic moduli.

(1,2,1,(0,3,3),(0,1,6,(0,1,6)))

(1,2,1,(0,3,3),(0,1,6,6))

(1,2,1,3,(0,1,6,6))

(1,2,1,3,6)

13357

Use orthogonal basis for S1

Use orthogonal basis for S1

Use orthogonal basis for S2

Use orthogonal basis for S3

178

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-59

Consider the combinational part of the synchronous scalar
multiplication circuit (see fig.5).

Figure 5. Combinational part of vectors scalar multiplication circuit

Clock frequency of the device depends on the critical path
length for this part which contains three operations:
multiplication, addition and residue calculation.

Several flow devices for scalar multiplication of vectors
were designed. Each RNS device consists of three parts:
forward conversion from positional notation, main body for
scalar multiplication and reverse conversion from recursive
RNS notation to positional notation. Clock frequency is
defined by the slowest circuit part. In our case it is scalar
multiplication part. Such parameters as maximal clock
frequency and total device area were estimated for three
different computing methods: traditional implementation using
positional notation, RNS implementation and recursive RNS
implementation. Tables I, II and III present the results.

TABLE I. BASIC DATA

Vector

length

Data bit

width

Moduli set

RNS Recursive RNS

512 16

7, 11, 13, 16,

17, 19, 23,

27, 29, 31

basic: 5, 7, 8, 9, 13, 17

complementary: 31, 181, 709

1024 20

37, 41, 43,

47, 53, 59,

61, 63, 64

basic: 5, 7, 8, 9, 11, 13

complementary: 17, 73, 659,

16963

2048 24

5, 7, 17, 31,
61, 67, 71,

73, 113, 127,

128

basic: 13, 17, 19, 23, 29, 31

complementary: 199, 2903,

11497

TABLE II. DELAY ANALYSIS

Vector

length

Data bit

width

Clock frequency (MHz)

Positional

notation
RNS

Recursive

RNS

512 16 409 726 855

1024 20 346 581 986

2048 24 294 537 794

TABLE III. AREA ANALYSIS

Vector

length

Data bit

width

Combinational part of the synchronous scalar

multiplication circuit

Positional

notation
RNS Recursive RNS

512 16 3119 3928 11443

1024 20 5040 5857 22745

2048 24 6915 6742 26038

V. Disadvantages of recursive
RNS arithmetic: possible ways to

overcome
Main disadvantages of the proposed method are as follows:

1) area overhead; 2) complication of forward and reverse
conversion unit from and to positional notation (complexity of
the other non-RNS operations also grows); 3) restrictions on
moduli bases choice; 4) restrictions on number of operations
in sequence (without recursion applied).

Some of the drawbacks of recursive RNS arithmetic
immediately follow from the fact that the used flow includes
residue operations for comparatively long numbers. In
traditional RNS arithmetic sets of small moduli or some
special moduli are used as a rule. So, recursive RNS arithmetic
can be further improved by usage of Mercenn numbers [11]
or/and special numbers 2

n
 ± k which require less area for

implementation of residue calculation.

This work was partially supported by a grant from RFBR
№ 13-07-00241а.

References
[1] Residue number system calculation device. Useful model patent No.

103010 Russian Federation, IPC G06F7/72. Assignee: IPPM RAS. App.
No. 2010148522; app.: 29.11.2010; reg.: 20.03.2011J. Clerk Maxwell, A
Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68–73.

[2] S.V. Gavrilov, O.N. Gudkova, A.L. Stempkovskiy. The Analysis of the
Performance of Nanometer IP-blocks Based on Interval Simulation. //
Russian Microelectronics, Vol.42, N7, 2013, P. 396–402. © Pleiades
Publishing, Ltd., 2013.

[3] Alexander Stempkovsky, Alexey Glebov, Sergey Gavrilov “Calculation
of Stress Probability for NBTI-Aware Timing Analysis” // Proc. of
ISQED, 2009, p.714-718.

[4] I. Ya. Akushskij and D. I. Yuditskij, Residue Number System Computer
Arithmetic. – Moscow.: Sovetskoe Radio, 1968. – 440pp

[5] N. S. Szabo and R. I. Tanaka, Residue Number System and its
applications to Computer Technology, McGraw-Hill, New York, 1967.

[6] M. A. Soderstrand et al, (Eds), Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing, IEEE Press, NY,
1986

[7] Amos Omondi, Benjamin Premkumar «Residue Number Systems:
Theory and Implementation», 2007.

[8] Gavrilov S., Glebov A., Pullela S., Moore S., Vijayan G., Dharchound-
hury A., Panda R., Blaauw D. Library-Less Synthesis for Static CMOS
Combinational Logic Circuits // Proc. of IEEE/ACM International

CLK

%

179

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-59

Conference on Computer Aided Design (ICCAD-97). - San Jose, CA,
USA, November 9-13, 1997. - Р. 658-662.

[9] Vygotskij M.Ya. «Elementary mathematics reference guide», Moscow,
2006.

[10] B. Tseng, G. A. Jullien, W. C. Miller. 1992. Implementation of FFT
structures using the residue number systems. IEEE Transactions on
Computers, 28(11).

[11] http://en.wikipedia.org/wiki/Mersenne_prime.

About Author (s):

A.L. Stempkovsky has degree of doctor of engineering
sciences, professor, academician of the Russian
Academy of Sciences (RAS) (2006). Dr.Stempkovsky
is the winner of the State Awards of the Russian
Federation in the field of science (2003); the author of
145 scientific publications including a number of
inventions and three monographies. His achievements
have been rewarded by the Honor Award and the
Friendship Award of the Russian Federation. Dr.
Stempkovsky is one of the leading scientists of Russia

in the field of Computer Aided Design (CAD) for micro- and nanoelectronic
equipment. During only last ten years, 99 research and development programs
were carried out by the Institute under his management. The employees of the
Institute have published more than 420 articles and reports in proceedings of
the Russian and international conferences, nine employees have defended
Ph.D. thesis and two - doctoral thesis.

V.M. Amerbaev received his MS degree in Math from
Al-Farabi Kazakh National University, Kazakhstan,
Almaty, in 1954 and Ph.D degree in Math from
Steklov Institute of Mathematics, USSR, Moscow in
1963. He is currently a chief scientific officer in the
Electrical and Computer Engineering Department at
Institute for Design Problems in Microelectronics,
Russia, Moscow. His current research interests are in
residue number systems, reliablity and VLSI.

R.A. Solovyev received his MS degree in Computer
Systems Engineering from National Research
University of Electronic Technology, Russia, in 2004
and Ph.D degree in Electrical Engineering from
Institute for Design Problems in Microelectronics,
Russia in 2007. He is currently department head in the
Electrical and Computer Engineering Department at
Institute for Design Problems in Microelectronics,
Russia, Moscow. His current research interests are in

residue number systems, highspeed hardware architectures, and VLSI.

T.Y. Isaeva received her MS degree in Computer
Systems Engineering from Lomonosov
Moscow State University, Russia and Ph.D degree in
Russia in 2002. is currently a Researcher in the
Electrical and Computer Engineering Department at
Institute for Design Problems in Microelectronics,
Russia, Moscow. Her current research interests are in
residue number systems, highspeed hardware
architectures, and VLSI.

E.S. Balaka received his master`s degree in Technics
and Technology from National Research University of
Electronic Technology, Russia, in 2010. She is
currently a Researcher in the Electrical and Computer
Engineering Department at Institute for Design
Problems in Microelectronics, Russia, Moscow. Her
current research interests are in residue number
systems, highspeed hardware architectures, and VLSI.

D.V. Telpukhov received his master`s degree in
Technics and Technology from National Research
University of Electronic Technology, Russia, in 2009
and Ph.D degree in Electrical Engineering from
Institute for Design Problems in Microelectronics,
Russia in 2013. He is currently a Researcher in the
Electrical and Computer Engineering Department at
Institute for Design Problems in Microelectronics,

Russia, Moscow. Diploma For the best Regular Paper on EWDTS’13
Symposium and outstanding contribution in Design & Test (2013). Winner in
the fair of scientific and technological ideas and projects of youth "RHYTHM
Zelenograd» 2011. His current research interests are in residue number
systems, highspeed hardware architectures, and VLSI.

http://www.ras.ru/
http://www.ras.ru/

