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Abstract— Variational models of unconstrained optimization 

problems have been extremely successful in a wide variety of 

restoration problems, such as image restoration. In this paper, we 

present an efficient limited memory quasi-Newton (QN) 

technique to compute meaningful solutions for large-scale 

problems arising in some image restoration problems. Numerical 

experiments reveals the effectiveness of the proposed method 

particularly for images of large size. (Abstract)  

    Keywords—Large-scale optimization, Image restoration, Quasi-

Newton methods, Limited memory (key words) 

  

I. Introduction  
     Restoring images from blurred or/and noisy data is an 

important task of image processing that is often formulated as 

an inverse problem to reconstruct the original image. The 

observation noise is usually assumed to be additive, white 

Gaussian that is independent of the image. However, in its 

most general form, image distortion is non-linear [1], and the 

noise can be either non-additive and/or non-Gaussian [7]. For 

example, the nonlinear behavior of image sensors becomes 

prominent when the light source changes rapidly during the 

exposure time [10]. The degradation could also be due to 

multiplicative noise [9]. Hunt [6] proposed expanding the 

observation model of the non-linear system into a Taylor 

series about the mean of the recorded image. Using this 

expansion an approximate filter is derived for image 

restoration. In this paper, we consider the following nonlinear 

space-invariant imaging system with additive noise  

= ( ) ,b s Au   

where A  is an N N  block Toeplitz, ill-conditioned matrix 

that characterizes blur, and b , u , and   are 1N   vectors. 

Here b  is lexicographical ordering of the samples of the data 

(observed image); u  is the true image (or object) and is 

nonnegative;   represents a particular realization of the 

additive (random) noise process that enters the data during the 

collection of the image.  
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    We will consider the following nonlinear least squares 

problem with regularization  
2 2

2 2( ) ( )min min
u u

Q u b s Au u  P P P P  

to restore the original image. Here and throughout, .P P 

denotes the usual Euclidean norm and  is a small positive 

number controlling the degree of regularity of the solution.  

    In order to optimize particular criteria, iterative algorithms 

can be designed to utilize general assumptions and require 

only deterministic parameters, such as the nonlinearity and the 

point spread function (psf) of the system. Thus, iterative 

algorithms are devoid of inaccuracies due to estimation of 

stochastic parameters from the data. In [11], Zervakis and 

Venetsanopoulos have considered the applications of the 

iterative Gauss-Newton (GN) method in nonlinear image 

restoration to solve the nonlinear least squares problem. 

However, the usage of Newton-type method requires 

calculations and storages of full matrices (in this context, the 

second derivative/Hessian matrix of ( )Q u ), which can be 

extremely expensive for many large-scale problems. Towards 

this direction, we consider limited memory quasi-Newton 

(QN) method based on the symmetric rank-one (SR1), which 

is arising from nonlinear image restoration problems. This 

limited-memory QN method resembles the QN method, except 

that the inverse Hessian approximation is defined implicitly as 

the outcome of updating a suitably selected initial matrix. In 

view of SR1 method's disadvantages and the nature of the 

image restoration problem (of large-scale and highly ill-

conditioned), modifications on the limited memory scheme 

and SR1 updates are proposed to cater these difficulties. 
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     II. Limited Memory Quasi-
Newton Methods 

     Consider the following unconstrained optimization problem  

( ),min
nx

f x
R

 

 where : nf R R  is a twice continuously differentiable 

nonlinear function.  

QN methods for unconstrained optimization of a nonlinear 

function are based upon the following iterative process  
1

1 = ( ); = 0,1,....k k k k kx x B f x k 

    

     The famous SR1 update for the Hessian approximation can 

be derived by the formula 

1

( )( )
= ,

( )

T

k k k k k k

k k T

k k k k

y B s y B s
B B

y B s s


 



            

 which makes a rank-one change to the previous Hessian 

approximation.  

In 1992, Byrd et al. [5] presented the compact representations 

of the SR1 update. According to Byrd et al., the limited 

memory SR1 formula can be written in a compact form:  
( 1) 1

0= ,L SR T

k k k kB B Q M Q  

where  
0 0= , = ,T

k k k k k k kQ Y B S M W S B S    

2 1 2 1= [ ... ] , = [ ... ] ,m m

k k m k k k k m k kS s s s Y y y y      R R

 
1 1

1 1

; ,
[ ] =

; > .

T

i k m j k m

k ij T

j k m i k m

y s if i j
W

y s if i j

     

     

 



 

 Note that 
kW  is a symmetric matrix and its upper triangular is 

identical to that of T

k kY S . 

( 1) 1

0 0 0 0
ˆ= ( )( ) ( ) ,L SR T T

k k k k k k k kH H S H Y W Y H Y S H Y    

 where ˆ
kW  is defined as the following symmetric matrix 

whose lower triangular is identical to that of T

k kY S   

1 1

1 1

; ,
ˆ[ ] =

; > .

T

j k m i k m

k ij T

i k m j k m

y s if i j
W

y s if i j

     

     

 



 

 However, like its counterpart in standard SR1 update, this 

compact representation may not preserve positive definiteness 

even when 
0B  does. 

 

A. Modifications on Limited 
Memory SR1 Methods 

    In this section we shall present several remedies to 

overcome the difficulties arise from the implementation of 

SR1 updates within the above mentioned limited memory 

schemes. 

  

1) Scaling for the Initial Matrix 

    For standard QN methods, we often choose 
0 =B I  

initially, and after the first iteration, we use a multiple of 

identity, I  as initial matrix to update  

1 0 0= ( , , ),B U I y s  

 where   is usually chosen as the Oren-Luenberger scaling, 

given by 0 0 0 0

0 0 0 0 0

= = .
T T

T T

y s y s

s B s s s
   

 We let (0)

kB  be the scaling matrix 
k I  where 

k  is computed 

by either  
2

(1) (2)1 1 1

2

1 1 1

= or = ,
T T

k k k

k kT

k k k

y y s

y s s
   

  

P P

P P
  

 as long as 
1 1 > 0.T

k ky s 
 

 

2) Small or Zero Denominator in SR1 
Update 
    It is known that the SR1 updating matrix ( 1)

1

SR

kB 
 is well 

defined only if both the following conditions hold for its 

denominator:  
( 1)( ) 0,SR T

k k k ky B s s   

( 1)

( 1)

| ( ) |
cos > 0.

SR T

k k k k

k SR

k k k k

y B s s

y B s s
 


 

P PP P
 

 Although it rarely happens, once the cosine value approaches 

zero, it can hurt the performance of the algorithm. Thus, a 

safeguard that ensures  
( 1) ( 1)| ( ) | ,SR T SR

k k k k k k k ky B s s y B s s  P PP P  

 is therefore strongly recommended.  

 

3) Positive Definiteness of SR1 Updating 
Matrix 
     For L-SR1 method, we do not have any guarantee on the 

positive definiteness. Thus, we propose to use the Osborne and 

Sun’s scaling selectively on certain iterations in preserving 

positive definiteness of SR1 update as follows: The detailed 

algorithm for computing   is stated as below: 

 

Algorithm 1.     

IF b>a THEN  := 1k  

 ELSE  

 

2

1

2

:= ( / ) / ;

:= / ;

:= / ;

c b c a

c b

c b





 

 



   

     DEFINE 
2

( ) = ;
c b

b a


 

 




   

     IF 
1 1( ) ( )        THEN   

 
1:=1/ ;k     

     ELSE   

 
2:=1/ ;k     

     END IF;  

END IF;  

RETURN. 
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Algorithm 2 describes the detailed steps for computing 
k  

that based on 
k  while Algorithm 3 gives the procedure for 

calculating 
k  using 

k
 . 

Algorithm 2.     

IF k=0 THEN  := 1;k   

ELSE  
1 1ˆ[ , ] := ( );k k k k kC N eigen decomposition D W D     

IF min-eigenvalue( ) > 0kN     THEN   

1 1

1 12 2:=max-eigenvalue( );T T

k k k k k k k k kN C D Y Y D C N
 

 

1 1:= , =1.1k k    ;   

     ELSE IF 
1 1 > 0T

k ky s 
 THEN   

 

2

1

1 1

:= ;k

k T

k k

y

y s
 

 

P P
 

     ELSE  

 
1:= ;k k  

  

     END IF;  

END IF;  

RETURN. 

  

Algorithm 3.     

IF k=0 THEN   

 := 1;k   

ELSE  
1 1[ , ] :=eigen-decomposition( );k k k k kC N D W D       

  IF min-eigenvalue( ) > 0kN     THEN   

1 1

1 12 2= 1/max-eigenvalue( );T T

k k k k k k k kk
N C D S S D C N

 
     

2:= ,k k
     

2 = 0.9 ;   

     ELSE IF 
1 1 > 0T

k ky s 
 THEN   

 
2

1

1 1

:= ;k

k T

k k

y

y s
 

 

P P
  

     ELSE  

 
1:= ;k k  

  

     END IF;  

END IF;  

RETURN. 

  

     Subsequently, we state the limited memory algorithm that 

uses these 
k s (L-SR1-S): 

Algorithm 4. (L-SR1-S Algorithm)   

- Choose starting point 
0x , integer > 0m , and an initial 

symmetric and positive definite starting matrix 
0 =H I , set 

= 0k . 

- If the convergence criterion is achieved, then stop. 

- Compute = ( ).k k kd H f x   

- Find an acceptable steplength, 
k , such that the Wolfe 

conditions  

1( ) ( ) ( ) ,T

k k k k k k kf x d f x f x d       

 and  

2( ) ( ) ,T T

k k k k k kf x d d f x d       

 for 
1 20 < < <1   , 1

1
<

2
 , are satisfied. 

- Set
1 =k k k kx x d  . 

- Let = min{ , 1}m k m % .  

Compute 
j  via Algorithm 2 or 3. Update the scaled 

0H , 

1m %  times i.e. let  

ˆ ˆ1 1 0 1

ˆ=

ˆ ˆ ˆ ˆ ˆ1 1

ˆ= 1

1 1 1

= ( ... )( )( ... )

( ... )( )( ... )

.

k
T T T

k k k k m j k m k k

j k m

k
T T T

k k m j k m k m k m k m k

j k m

T T

k k k k k k

T

k k k

H W W W H W W W

W W s s W W

W s s W

s s



 

 



    



      

 

  











M         

- Set := 1k k   and go to Step 1 .  

   

   III. Numerical Results 
      In this section, we employ our limited memory SR1 

methods for solving large-scale optimization problems arising 

in image restoration. We have used the limited memory BFGS 

method with m=3,5 by Liu and Nocedal [4] and improved 

version of the conjugate gradient algorithm using the Fletcher–

Reeve formula by Birigin and Martnez [3] (FRSCG), which is 

mainly a scaled variant of Perry’s [8]. The gradient of the 

image function is given by  

( ) = 2 ( )[ ( )] 2 ,T

u sQ u A D Au b s Au u     where ( )sD Au  

denotes the diagonal matrix with the k -th diagonal entry 

being =[ ( )] = ( ) | .s

s kk x A u
i ki i

x

D Au x 




  

The Hessian matrix then can be written in the matrix 

representation: 2( ( )) .TA D Au A I  

We use the following point-wise nonlinear logarithmic 

function of Zervakis and Venetsanopoulos [11]  

( ) = 30* ( ).s x log x  

The discrete point spread function of the block-Toeplitz-

Toeplitz-block matrix A  is given by 
2 2( )

( , ) = exp[ ].
2

x y
a x y

 
 

 Noisy sequences are generated with signal-to-noise ratios 

(SNRs) of 30 and 40 dB, respectively. Observed images for 

noise-to-signal ratio of 40dB are shown in Figure 1. We 

employ the root-mean-square error (rmse) which describes the 

average relative deviation of the restored image ( )u   from 

the original image u   

2

2

( )
= ,

u u
rmse

u

P P

P P
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where   is the the optimal regularization parameter. The 

parameters in Wolfe conditions are set as 4

1 = 10   and 

2 = 0.9  where = 1k  is always tried first.  

In the numerical tests, we consider the Cameraman test image 

from Matlab’s Image Processing toolbox (the size of the 

images are 128 128 ). The number n  of variables in the 

objective function is as large as or is equal to 16384. The 

parameter m  is set to 3 and 5, respectively and the results are 

given in Table 1-4. The implementation of L-OCSSR1 uses 

the same line search technique as that of L-SR1 with compact 

representation. The only difference is in matrix representation 

and subsequently the step computation. In Table 1-4, the 

following notations are used:   

• M1: L-OCSSR1 with     (0) 2

1 1 1= / T

k k k kH y y s I  P P ;  

 • M2: L-SR1-S with =1.1*k k  ;  

 • M3: L-SR1-S with = 0.9*k k
  ;  

 • M4: FRSCG;  

 • M5: L-BFGS with 
(0) 2

1 1 1= / T

k k k kH y y s I  P P .  

      Table 1-4 indicate that both L-SR1 (M2) and L-BFGS 

(M5) methods have some wins and losses in the relative errors 

and the number of iterations with L-SR1 (M2) scores most 

wins in average. Therefore, M2 and M5 seems to be more 

efficient than the other methods in terms of rmse and the 

iteration numbers. On the other hand, in term of CPU time, 

FRSCG (M4) wins definitely, since this method requires the 

least computational effort per iteration. 

 
Table  1: The restoration results by Method 1-5 for the images of Bridge and 

Cameraman with 30 dB 

Method 
 Bridge Cameraman  

rmse  itrn.   time rmse  itrn.   time  

M1 (m=3)  0.0750 219  311.2  0.0790 244  322.5 

M2 (m=3)  0.0748 214  291.3  0.0789 238  301.4 

M3 (m=3)  0.0754 243  335.1  0.0795 268  344.2 

M4 (m=3)  0.0750 228  274.5  0.0791 255  386.1 

M5 (m=3)  0.0749 216  288.4  0.0790 236  300.8 

 
Table  2: The restoration results by Method 1-5 for the images of Bridge and 

Cameraman with 40 dB 

Method 
 Bridge Cameraman  

rmse  itrn.   time rmse  itrn.   time  

M1 (m=3) 0.0768 261 336.8 0.0813 281 343.3 

M2 (m=3) 0.0763 252 327.4 0.0807 270 334.2 

M3 (m=3) 0.0772 292 341.7 0.0814 288 348.5 

M4 (m=3) 0.0767 268 298.5 0.0821 290 319.3 

M5 (m=3) 0.0761 255 321.8 0.0810 275 337.9 

 

 

 

 

 

 

 

Table  3: The restoration results by Method 1-5 for the images of Bridge and 

Cameraman with 30 dB 

Method 
 Bridge Cameraman  

rmse  itrn.   time rmse  itrn.   time  

M1 (m=3) 0.0619 139  217.3  0.0644 160  222.5 

M2 (m=3)  0.0615 134  213.8  0.0647 157  218.4 

M3 (m=3)  0.0631 150  233.6  0.0659 163  241.9 

M4 (m=3)  0.0623 141  201.7  0.0662 178  208.5 

M5 (m=3)  0.0613 138  215.2  0.0648 161  219.9 

  
Table  4: The restoration results by Method 1-5 for the images of Bridge and 
Cameraman with 40 dB 

Method 
 Bridge Cameraman  

rmse  itrn.   time rmse  itrn.   time  

M1 (m=5)  0.0648  175  286.9   0.0705  198  299.6  

M2 (m=5)  0.0643  173  281.5   0.0695  192  290.9  

M3 (m=5)  0.0653  190  302.1   0.0708  212  311.3  

M4 (m=5)  0.06649 179  288.1  0.0719 197  286.4 

M5 (m=5)  0.0646 176  283.5  0.0701 189  292.7 

 

    
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Figure  1: The restored images of Cameraman by using different methods (a): 

L-OCSSR1 with (0) 2

1 1 1= ( / ) ,T

k k k kH y y s I  P P (b): L-SR1 with 

(0) = (1.1* ) ,k kH I (c): L-SR1 with (0) = (0.9* ) ,k k
H I (d): FRSCG, and (e): 

L-BFGS with (0) 2

1 1 1= ( / ) .T

k k k kH y y s I  P P  

 

 



 

163 

 

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014. 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-56 

 

    According to the results showed in Figures 1, we observe 

that images reconstructed by M1 and M2 are more clearly and 

better representing the original image. All in all, we can 

conclude that image reconstruction based on limited memory 

SR1 methods are useful. 

 

  IV. Conclusion 
       In summary, we have proposed some efficient limited 

memory symmetric rank-one methods for solving nonsmooth 

and nonseparable minimization problems. Theoretical 

considerations and numerical experiments indicate that our 

proposed limited memory SR1 method is competitive in 

solving the nonlinear image restoration problems and our 

numerical tests are able to demonstrate the efficiency of the 

proposed method. Furthermore, since the methods can also be 

served as general optimization solver, it may be fruitful to 

extend the methods for solving optimization problems related 

to image super-resolution and image denoising. 
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