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Abstract—Prerequisite to the better living of an insulin 

dependent diabetes mellitus (IDDM) or type-1 diabetic patients is 

the closed loop blood glucose regulation via subcutaneous insulin 

infusion and continuous glucose monitoring system (SC-SC 

route). Closed loop control for blood glucose level in a diabetic 

patient necessarily uses an explicit model of the process. A fixed 

parameter full order or reduced order model does not 

characterize the inter-patient and intra-patient parameter 

variability.  This paper deals with a real time implementation of 

online identification of frequency domain kernels from the input 

output data of an IDDM patient. The data-driven model of the 

patient is identified in real time by solving Volterra kernels up to 

second order using adaptive recursive least square (ARLS) 

algorithm with a short memory length of M=2. The frequency 

domain kernels, or the Volterra transfer function (VTF) are 

computed by taking the FFTs on respective time domain kernels 

for a specific length of extended input vector. The dynamic 

glucose-insulin process model of a IDDM patient in SC-SC route 

based on the work of Dalla Man et. al. has been constructed in 

hardware platform that acts as a virtual patient. The validation 

results have shown good fit of responses with nominal patient in 

simulation as well as with online identification. 

Keywords— diabetes mellitus, identification, nonparametric 

model, Volterra kernels, hardware realization. 

I.  Introduction 
In modern lifestyle pattern, intensive treatment of insulin 

dependent diabetes mellitus (IDDM) patient or type-1 
diabetics is required to avoid later life complications resulting 
from sustained hyperglycemia. The treatment of Diabetes 
includes solving of the optimization problem of controlling the 
postprandial hyperglycemia while avoiding hypoglycemia. 
Proper dose of insulin needs to be applied to the bloodstream 
intermittently through subcutaneous or intravenous infusion 
for tight regulation of blood glucose (BG) level in the range of 
70-144 mg/dl (normoglycaemia) in presence of normal meal 
and activity conditions of the patient [1-3]. The control of 
glucose-insulin processes is a non-trivial task requiring a 
model that can accurately predict the dynamic behaviour of 
the patient over its complete operating range. The closed loop 
process to determine insulin dosage is a stochastic one in 
presence of meal and activity disturbances, delays in the effect 
of meals, glucose measurement and subcutaneous insulin 
action involving interplay and patient parameter variability. 
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The researchers so far have mainly used the first principle 
model in full order or Bergman‟s minimal model of the 
glucose-insulin (GI) process [4-11] for applying modern 
control algorithms. The model based control algorithms have 
performed very well, but the inherent uncertainty in the model 
(or patient parameters) has not been explicitly addressed [4]. 
Model based controllers based on off-line measurements from 
a fixed model take the detailed and dynamic model of the 
patients, constraints on insulin infusion rates and blood 
glucose concentration and provide optimal insulin rates [9]. 
But the main disadvantage of using parametric model in model 
based controller is that these models lack full information of 
nonlinearities in such a coupled biological system. On the 
contrary, nonparametric model decomposes arbitrary basis 
functions leading to most concise signal representation and 
best conditions of identification algorithms and model 
predictive control can easily be realized if the model can be 
perfectly identified from the process in real time [12-21].  

The present work concentrates on the online identification 
of a nonparametric model of the glucose-insulin process using 
input output data from the patient. The nonlinear glucose-
insulin process model of a IDDM patient in SC-SC path based 
on the work of Dalla Man et. al. [22-25] has been simulated in 
LabVIEW and run with input variations. The simulated model 
is then deployed into the microcontroller based cRIO (compact 
reconfigurable input output) hardware platform [26]. The 
cRIO unit has been used as the standalone real time virtual 
patient. The input-output data from this virtual patient model 
have been used to identify the model online. The Volterra 
transfer functions or the frequency domain Volterra kernels 
[14-21] of the model are computed by taking FFTs on 
respective time domain Volterra kernels using adaptive 
recursive least square (ARLS) algorithm [16, 18-21]  all in 
real time on dSPACE hardware platform [27]. 

The next section gives an overview of the system. Section 
III details on the proposed identification methodology. A real 
time implementation with validation is given in section IV and 
concluding remarks are given in section V. 

II. System Overview 
Fig. 1 shows the block diagram of a closed loop insulin 

delivery system for blood glucose (BG) regulation of an 
IDDM patient that uses model based control. 

 

 

Figure 1. Closed loop blood glucose regulation in IDDM patient. 
  



 

95 

 

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014. 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-43 

 

 

A. Model of Glucose-Insulin dynamics 
The model for glucose–insulin kinetics used in this paper is 

based on the dynamic equations used by Dalla Man et.al. [22] 
in the meal simulation model of the glucose-insulin system for 
type-1 diabetics. The structure of the meal simulation model 
shown in Fig. 2 includes glucose G and insulin I and the 
glucose fluxes, i.e., rate of appearance Ra, endogenous glucose 
production EGP, utilization U, renal extraction E, and insulin 
flux i.e. secretion S which is taken as zero for type-1 patient, 
and degradation D [22, 23]. The subcutaneous glucose kinetics 
used in this model has been developed by Magni et. al. [24]. 
The model has been successfully used by the researchers for 
in-silico trial for testing various control algorithms [25]. 

B. Realization of Virtual Patient Model 

The nonlinear meal simulation model of the glucose-
insulin system as described above has been reconstructed in 
LabVIEW simulation environment and deployed into a 
microcontroller based cRIO hardware platform [26] through 
ethernet port of PC. This is used as the standalone unit to serve 
as a virtual patient model. The analog input modules of cRIO 
are used to connect meal disturbance and insulin input. 
Glucose output is monitored from the analog output module. 
The input-output data is taken from the virtual patient cRIO 
module and connected through the ADC of dSPACE kit-1104 
[27] for online identification of the patient. The output 
response from the patient and the identified model taken from 
DAC of the dSPACE unit are displayed as shown in Fig. 3. 

 

III. Identification of Nonlinear 
Model Structure 

Identification requires a proper choice of model structure. 
It involves selection of experimental parameters like sampling 
time and excitation signal. Block oriented models have been 
used by many researchers for identification of nonlinear 
systems. It gives insight to the complexity of the process, 
particularly for nonlinear processes and it has an advantage of 
approximating the nonlinear processes with higher accuracy 
with less computation time[12-21]. Nonparametric approaches 
represent the dynamic characteristics of the nonlinear system 
from expansion of the Volterra series. The adaptive recursive 
least square (ARLS) algorithm is used to optimize the kernels 
[14-16]. Frequency domain kernels directly describe the 
Volterra Transfer functions of the nonlinear process [15-21].  

A. Volterra kernels 
For a MISO system like the present one, with ix number of 

inputs, where i=1, 2, … m, the output y(t) for a memory length 
M is directly obtained from the generalized finite Volterra 
series in time domain up to second order kernel is expressed as  
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The self-kernels gii acting on a single input are symmetric 
and the cross-kernels gij acting on different inputs and they are 
asymmetric [12]. The second order Volterra structure for the 
present single-input single output GI process thus follows 
directly from equation (1) and the output of the process is: 

)(*)(*)(*)(
)2()1()0( txtxgtxggty             (2) 

where the „g‟ denotes the respective Volterra kernels in 
time domain and „*‟ denotes the convolutions. The output y(t) 
can also be expressed in terms of the nonlinear operators as: 

)]()[()( txtGty               (3) 

G represents the gain of the Volterra model, which is sum 
of gains for a linear model and nonlinear models [12, 17] of 
different degrees of nonlinearity i.e. 

.........21  GGG              (4) 

The first and second order Volterra kernels G1 and G2 for 
the SISO system are respectively given by:  
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Figure. 3.  Block Diagram of the connection of virtual patient model in 

cRIO with the identification routine in dSPACE real-time hardware. 

 

  

 
Figure 2. Scheme of the glucose insulin system [22]. 
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B. Implementation of the Block 
Oriented Models 
Since the higher order model is not very useful for 

computation and real time implementation purpose, the second 
order Volterra model having a short memory of M=2 has been 
considered here. The required Volterra kernels are computed 
online in adaptive way using recursive least square (ARLS) 
algorithm to select the filter coefficients [16-21] and update 
the same with new data set by minimizing a cost function: 
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where, e() is the error signal and d() is  the desired  signal 

and model output is y().  is a factor that controls the memory 
span of the adaptive filter. 

C. Frequency Domain Solution 
The frequency domain kernels of the Volterra series gives 

the nonlinear transfer function or the Volterra transfer function 
of the process which can be used for the design of Model 
based Controller [12-13, 15, 19, 21]. The frequency domain 
kernels have been computed by taking the FFTs on respective 
time domain kernels for a specific length of extended input 
vector.  
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where, Q is the maximum order of the kernel. The 
frequency domain kernels have been computed by taking the 
fast Fourier transforms (FFTs) of the respective k

th
 order time 

domain kernel (nonlinear impulse response of order k).  

The online identification of the data driven model of the 
Glucose-Insulin process of a IDDM patient uses the overlap-
save algorithm [19-21] with appropriate length N of model 
structure depending on the memory M.  The insulin infusion 
level from and the glucose output produces the Volterra 
kernels G1and G2 of equations (5) and (6). Normal 
postprandial blood glucose level of 130mg/dl [23] is taken as 
the reference „blood glucose‟ level for the ARLS filter. The 
flowchart of the identification process in frequency domain is 
shown in Fig. 4. The algorithm is listed below: 

1. Considering the present data and one previous data and 
memory length M=2, the extended input vector for the 
present model structure of length N=M(M+1)/2 +M = 5 
is created for the nonlinear part of the Volterra model.  

2. By overlap-save algorithm, N no. of zeros are added 
left to the extended input vector and the time domain 
kernels are computed by ARLS algorithm from the 
extended input vector of size 2N.   

 

3. 2N point FFTs are taken on the kernel g(n) which acts 
as a nonlinear transfer function or the Volterra transfer 
function (VTF) of the process and then input data is 
multiplied with the VTF to generate the output.  

4. The input–output data from the process is refreshed 
with the next sample of data and the steps 1–3 are 
repeated. 

IV. Validation of Identification 
Algorithm 

As the physiological process of an IDDM patient is 
completely lacking endogenous insulin secretion, the BG level 
rises to a large value in open loop. The identification 
algorithm in both simulation and hardware platform has been 
tested with 45g of glucose ingested at 8 a.m.(500min from 
start time), 70g at noon, and 70g at 8 p.m. and the target 
glucose level is 130 mg/dl as used in [23]. Fig. 5 shows the 
photograph of  the hardware set-up for experimentation on the 
virtual patient model with cRIO and dSPACE 1104 kit to run 
in real time.  The performance results exhibit a good match 
with the output both in the simulation result as shown in Fig. 6 
and also from real time identification as shown in Fig.7.  

 

 

Figure 5. Photograph of Experimental Set-up with cRIO & dSPACE units. 

 

  

 
Figure 4.  Flow chart of identification algorithm.  
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V. Conclusion 
A data driven block-oriented modeling in frequency 

domain for the nonlinear dynamic system of multivariable 
glucose-insulin process in IDDM patient has been presented. 
The algorithm has relatively short memory effects. The 
advantages of block-oriented model have been utilized with 
proper selection of Volterra kernels by ARLS algorithm and 
extended input vectors for the nonlinear process containing 
both deterministic insulin input as well as meal disturbance. 

The online identification of the data driven model of the 
glucose-insulin process of the IDDM patient in hardware 
platform has been tested with the same amount of meal input 
ingested at the same instant of time as in the simulation 
experiment. The closeness of the glucose output from the 
cRIO model and the output of the identified model as shown 
in Fig. 7 confirms the model‟s accuracy for nominal patient in 
real time environment too. 

Frequency domain Volterra term is expressed by means of 
a product with FFT inputs over the finite memory interval on 
time domain Volterra terms expressed by means of a multifold 

convolution integral. The set of kernels obtained from the 
present frequency domain Volterra model describes the 
nonlinear transfer functions or Volterra Transfer Function 
(VTF) of the nonlinear process in varied conditions of the 
patient that can be directly used in model based control.  

The present method will be useful to the researchers for 
testing various model based control algorithms directly on the 
patient model derived from real time data of the patient instead 
of in-silico trial which uses a fixed UVa/Padova T1DM 
metabolic simulator  model [ 25]. 
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