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Abstract—Graph Coloring Problem (GCP) bears an 

enormous significance to the researchers in the field of soft 

computing. In this paper, we demonstrate a Quantum-Inspired 

Evolutionary Algorithm (QEA) to solve GCP. We use two 

dimensional arrays of Q-bits called Q-bit individual to produce 

binary individual. Q-gate operation is applied as a variation 

operator on Q-bit individuals. In traditional evolutionary 

algorithm (EA) for GCP, k-coloring approach is used and the EA 

is run several times for decreasing value of k until lowest possible 

k is reached. In our QEA, we start with the number of colors 

equal to the theoretical upper bound of the chromatic number, 

which is maximum out-degree + 1, and during evolution some 

colors are made unused to reduce the number of color in each 

generation. As a result, solution is found in a single run. We test 

36 datasets from DIMACS benchmark and compare the result 

with several recent works. For five datasets, our algorithm 

obtains better solution than other. 

Keywords—quantum-inspired evolutionary algorithm (QEA), 

graph coloring problem (GCP), combinatorial optimization, Q-

bit representation, Q-gate.  

I. Introduction 
Graph coloring problem (GCP) is a well-known NP-hard 

problem [1]. GCP assigns different colors to the adjacent 
vertices of a graph using minimum number of colors. The 
GCP is illustrated with a simple graph in Fig. 1, where 
minimum number of colors needed to color eleven vertices is 
three. In Fig. 1, the vertex number is shown within the circle 
and the color number is shown outside the circle. The notable 
application of GCP are seen in pattern recognition [2], map 
coloring [3], radio frequency assignment [4], Bandwidth 
allocation [5], and timetable scheduling [6] etc. 

 

Fig.1: Example of graph coloring. 

Assume, graph G = (V, E) is to be colored with m number 
of colors. The upper bound of the number m is d+1, where d 
is the maximum out degree of the graph. 
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Our objective is to color all the vertices initially with m = d+1 
and then reducing m dynamically so that minimum chromatic 
number, denoted by x(G), is found, that is m = x(G) is 
reached. In this paper, we propose a Quantum-inspired 
Evolutionary Algorithm (QEA) [7], which is the combination 
of concept of quantum computing [8] and evolutionary 
algorithm. It uses population of Q-bit individuals and Q-gate 
as a main variation operator. 

II. Prior Work 
One of the most recent works on GCP is Memetic 

Algorithm (MA) [11] that used binary encoded chromosome. 
Population is updated mainly using classical crossover 
operator. Offsprings are corrected if needed. Then a 
deterministic improvement technique is applied on the 
corrected offsprings to improve the solution quality. Another 
work on GCP [12] combines wisdom of artificial crowds 
approach with the genetic algorithm (GA). In this approach, 
multiple parent selection and multiple mutations based on the 
closeness of the solution to the global optima are used. The 
algorithm is run several times for several decreasing values of 
k and the minimum possible k value is taken as the minimum 
chromatic number. A guided genetic algorithm for GCP called 
MSPGCA is reported in [13], where the authors fine-tuned the 
initial chromosomes using a simple genetic algorithm and then 
the deterministic MSPGCA algorithm is run to dynamically 
reduce the chromatic number. In paper [14], the authors have 
proposed a hybrid algorithm to solve GCP. GA has a highly 
degenerate objective function. In order to compensate for this 
degeneracy, bitstream neuron (Boltzmann Machine) was 
applied to the solution obtained from GA. A hybrid immune 
algorithm is also applied on GCP [15]. All the above 
mentioned approaches used integer encoding for the 
chromosomes except the paper [11]. 

III. Methodology 
Representation of the Graph is discussed first and then the 

proposed QEA for GCP is discussed.   

A. Representation 
A Q-bit is defined as the smallest unit of information [8] in 

QEA, which is defined with a pair of numbers (α, β), 

where  | |  | |   . | |  and | |  gives the probability 
that the Q-bit will be found in the “0” state and the “1” state, 
respectively. For GCP, we use two-dimensional array of Q-
bits as a Q-bit individual, where each row corresponds to a 
color and each column corresponds to a vertex. Later binary 
individuals are produced from Q-bit individuals. If the jth 
vertex be colored using the ith color, then the (i, j)th element 
of the array is 1 and the other elements are 0s. Thus, in a valid 
chromosome, every column must have a single 1 and a row 
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will have one or more than one 1s placed on non-adjacent 
vertices columns. The encoding scheme is illustrated in Fig. 2. 
A row may also have all 0s, in which case the color is not used 
in the solution. If a column has all 0s (the vertex is not 
colored) or more than one 1s (more than one color is assigned 
to that vertex), then the encoding is invalid. On the other hand, 
if a row has 1s in adjacent vertices columns (same color is 
assigned to adjacent vertices), then the encoding is invalid. 
These situations may arise during creation of the binary 
individual from Q-bit individual. When a binary individual 
becomes invalid, then it is corrected using repair procedure. 
Thus the number of rows having at least one 1 is the number 
of used colors and is used as the fitness function in our QEA. 

 1 2 3 4 5 6 7 8 9 10 11 

1 0 1 0 0 1 0 1 0 0 1 0 

2 0 0 0 0 0 0 0 0 0 0 0 

3 1 0 1 0 0 0 0 0 1 0 1 

4 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 1 0 1 0 1 0 0 0 

Fig. 2: Proposed binary individual for GCP of the graph of 
Fig. 1. 

B. Proposed QEA to solve GCP 
We present the detailed algorithm of QEA for the Graph 

Coloring. The Graph Coloring problem is considered to 
demonstrate the applicability of QEA to the combinatorial 
optimization problem. 

Procedure QEA for the GCP 

01: begin 

02:     t   0 

03:     initialize Q(t) 

04:     make P(t) by observing the states of Q(t) 

05:     repair P(t) 

06:     evaluate P(t) 

07:     store the best solutions among P(t) into B(t) 

08:     while (t < MAX GEN) do 

09:     begin 

10:         t   t + 1 

11:         make P(t) by observing the states of Q(t - 1) 

12:         repair P(t) 

13:         evaluate P(t) 

14:         update Q(t) 

15:         store the best solutions among B(t - 1) and P(t) into B(t). 

16:         store the best solution b among B(t). 

17:         if (migration-period) 

18:         then migrate b or   
  to B(t) globally or locally, 

respectively 

19:     end 
20: end 

Here, length of row and column of Q-bit individual is m 
and v respectively for GCP. m is the number of colors and 
start with the value equal to „maximum out degree+1‟and v is 
the number of vertices. QEA maintains a population of Q-bit 

individuals,  ( )  *   
    

    
      

 + at generation t, where 

k is the size of population, and   
  is a Q-bit individual. 
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Where,     is the number of Q-bits in an individual 

and          . In the step of initialize Q(t), all     
  and 

    
  are initialized with  √ ⁄ , where,             and 

         . On line 04 and 11, QEA produce population of 

binary individuals,  ( )  *  
    

      
 + from population of 

Q-bit individuals, where t = 0, 1, 2, … . For notational 
simplicity, x and q are used instead of   

  and   
  respectively. 

The following make procedure is used to obtain the binary 
string x. 

Procedure make (x) 

01: begin 

02:     i   0 

03:     j   0 

04:     while (i < m) do 

05:     begin 

06:         i   i + 1 

07:         while (j < v) do 

08:         begin 

09:             j   j + 1 

10:             if (random [0, 1) < |    |
 
) 

11:             then        

12:             else        

13:          end 

14:     end 

15: end 

Binary individuals are repaired if needed. Two possible 
problems may occur – (i) a column may have multiple 1s or 
(ii) a column may have all 0s. We also have to ensure that 
adjacent vertices have colored with different colors.  

 1 2 3 4 5 6 7 8 9 10 11 

1 0 1 0 0 0 1 0 0 1 0 1 

2 0 0 0 0 0 1 0 1 0 0 0 

3 1 0 0 1 0 0 1 0 1 0 1 

4 0 0 1 0 0 0 0 0 1 0 0 

5 0 0 0 0 0 0 0 1 0 0 1 

6 1 0 0 1 0 1 0 0 1 0 0 

Fig. 3: Invalid Chromosome. 

The chromosome shown in Fig. 3 is invalid and has the 
two possible problems. Invalid chromosomes are corrected by 
repair procedure. For case (i), only one 1 is kept and for case 
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(ii), a 1 is inserted. Both are done at a selected row among 
used color cluster which is sorted according to number of uses 
so that no conflict is created at that row (breaking tie 
randomly). If such a used color row is not available, then a 1 is 
inserted at a randomly selected row among unused color 
clusters. A possible corrected version of invalid chromosome 
of Fig. 3 is shown in Fig. 4.  

 1 2 3 4 5 6 7 8 9 10 11 

1 0 1 0 0 1 0 1 0 0 1 0 

2 0 0 0 0 0 0 0 0 0 0 0 

3 1 0 1 0 0 0 0 0 1 0 1 

4 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 1 0 0 0 

6 0 0 0 1 0 1 0 0 0 0 0 

Fig. 4: Corrected Chromosome of Fig. 3. 

Binary chromosomes are corrected using repair procedure 
as follows: 

Procedure Repair (x) 

01: begin 

02:     for (all vertex v in random order) do 

03:     begin 

04:         iscolored false 

05:         for (all color i which is assigned to v in a ordering  

most to least used) do 

06:         begin 

07:             if (iscolored) 

08:             then remove color i from v 

09:             else if (v is colorable with i) 

10:             then iscolored true 

11:         end 

12:     end 

14:     for (all vertex v which is not colored) do 

15:     begin 

16:         iscolored false 

17:         for (all used color i in a ordering most to least used) do 

18:         begin 

19:             if (not iscolored and v is colorable with i) 

20:             then { 

21:                      color the vertex, v with i 

22:                      iscolored true 

23:             } 

24:         end 

25:         if (not iscolored) 

26:         then color the vertex v with an unused color 

27:     end 
28: end 

The update procedure of Q-bits is presented below: 

Procedure Update (q) 

01: begin 

02:     i   0 

03:     j   0 

04:     while (i < m) do 

05:     begin 

06:         i   i + 1 

07:         while (j < v) do 

08:         begin 

09:             j   j + 1 

10:             Determine       with the lookup table 

11:             Obtain (         ) from the following: 

12:             if (q is located in the first/third quadrant) 

13:             then [    
       

 ]
 

    (               ) 

14:             else [    
       

 ]
 

    (                ) 

15:         end 

16:     end 

17:          

18: end 

Here,    gate is used as a Q-gate to update a Q-bit 
individual   as a variation operator. Q-bit of ith row and jth 

column (         ) is updated as follows: 

[    
        

  ]
 

  (     )[    
       

 ]
 

  

Where,  (     ) is a simple rotation gate, 
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iii) otherwise 
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 ]   [    
        

  ]; 

 

 

Fig. 5:    gate based on rotation gate. 

In this QEA for GCP, the angle parameters used for the 
rotation gate are shown in Table 1. Let us define an angle 

vector    ,        -
 , where            can be found 

from table 1. We have used,                     and 
0 for the rest. The values from                are 

recommended for the magnitude of      . Otherwise, it may 

converse prematurely. The sign of      determines the 
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direction of convergence. We have chosen       . In table 

1,  ( ) is the fitness, and      and      are the (i, j)th bits of the 

best solution   and the binary solution  , respectively. In the 
QEA for GCP,    ,     ,         ,         
      ,     ,     ,      are used. 

Table 1: lookup table of       

           ( )   ( )       

0 0          

0 0         

0 1          

0 1         

1 0          

1 0         

1 1          

1 1         

 

In line 18 of Procedure QEA for the GCP, migration is 

defined as the process of copying current best solution in 

binary population in place of previous solutions. A local 

migration is implemented by replacing some of the population 

by the best individual, while global migration is implemented 

by replacing all the solution by the best individual. 

IV. Results 
We have implemented our algorithm in C++ programming 

language and compiled using 32 bit TDM-GCC compiler, 
version 4.8.1. Tests were run on a PC having following 
configuration: 

CPU: Intel Core i3-2350M 2.30 GHz 

Memory: 4 GB DDR3 1333MHz 

Operating System: Windows 7 64-bit 

Datasets used to test our QEA for GCP are taken from 
Center for Discrete Mathematics and Theoretical Computer 
Science (DIMACS) benchmarking graph collection [9] and 
[10]. Instances ending in .col are in DIMACS standard format. 
Instances in .col.b are in compressed format. We have used 
datasets ending with .col extension. The top of the dataset 
heading resembling “p edge 11 20” means that graph has 11 
vertices and 20 edges, where p denotes vertices. After that 
number of lines like “e 1 2” represent connection between two 
edges. We experiment with 36 datasets from [9] and [10]. The 
tested datasets are heterogeneous consisting of big graph like 
5-FullIns_4.col having 1085 vertices, highly dense graph like 
miles1500.col, highly complex graph like queen10_10.col, and 
even simple graphs. Our results are tabulated in Table 2 and 
compared with other results. For 29 datasets, we found 
expected chromatic number as stated in [9] and [10]. For 
dataset queen10_10.col, 1-FullIns_3.col, 1-FullIns_5.col, 2-
FullIns_5.col, 3-FullIns_3.col, 3-FullIns_4.col, 5-
FullIns_4.col, no expected chromatic number is stated there. 
We get better result for 2-FullIns_5.col, 5-FullIns_4.col 
compared to the result of paper [14]. For queen8_8.col our 
result is 9, which is better than the result of papers [13] and 
[14]. Our QEA produced more optimal result for 

queen8_12.col than result of [13]. For queen10_10.col, we get 
chromatic number 12, whereas this number found in paper 
[11] and paper [13] are 13 and 14, respectively. 

Table 2: Comparison of Obtained Results with Other Works. 

Dataset |V| |E| x(G) [12] [13] [14] [11] QEA 

myciel4.col 23 71 5 5 - - 5 5 

myciel5.col 47 236 6 6 - - 6 6 

myciel6.col 95 755 5 - - - 7 5 

myciel7.col 191 2360 8 - - - 8 8 

games120.col 120 638 9 9 9 9 9 9 

huck.col 74 301 11 11 11 11 11 11 

jean.col 80 254 10 10 10 10 10 10 

david.col 87 406 11 11 11 11 11 11 

queen5_5.col 25 160 5 5 5 - 5 5 

queen6_6.col 36 290 7 7 8 - 7 7 

queen7_7.col 49 476 7 7 7 7 7 7 

queen8_8.col 64 728 9 - 11 11 - 9 

queen8_12.col 96 1368 12 - 14 - - 12 

queen10_10.col 100 2940 ? - 14 - 13 12 

anna.col 138 493 11 11 11 11 11 11 

homer.col 561 1629 13 13 13 13 13 13 

miles250.col 128 387 8 8 - - 8 8 

miles500.col 128 1170 20 - - - 20 20 

miles750.col 128 4226 31 - - - 31 31 

miles1000.col 128 3216 42 42 42 42 42 42 

miles1500.col 128 5198 73 - 73 - 73 73 

zeroin.i.1.col 211 4100 49 - - - 49 49 

zeroin.i.2.col 211 3541 30 - - - - 30 

zeroin.i.3.col 206 3540 30 - - - - 30 

2-

Insertions_3.col 
37 72 4 - - 4 4 4 

inithx.i.1.col 864 18707 54 - - - - 54 

inithx.i.2.col 645 13979 31 - - - - 31 

mulsol.i.1.col 197 3925 49 - 49 - 49 49 

fpsol2.i.1.col 496 11654 65 65 - - - 65 

mulsol.i.5.col 186 3973 31 - - - - 31 

1-FullIns_3.col 30 100 ? - - - - 4 

1-FullIns_5.col 282 3247 ? - 6 6 - 6 

2-FullIns_5.col 852 12201 ? - - 11 - 7 

3-FullIns_3.col 80 346 ? - - - - 6 

3-FullIns_4.col 405 3524 ? - 7 7 - 7 

5-FullIns_4.col 1085 11395 ? - - 11 - 10 

Fig. 6 shows the average fitness (number of used color) 
and minimum fitness over successive generation for queen7_7 
dataset indicating the dynamicity of our algorithm. In our 
experiments, we found that rotation probability of 0.7 
performs better for all datasets. The termination condition also 
depends on the graph complexity. If both the average fitness 
and the best fitness do not change for a specified number of 
generations or the optimal known solution is found, then the 
algorithm is terminated. The number of generations varies 
with the graph complexity. Our algorithm is very fast because 
it can work with small population and also it needs less 
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generation than other evolutionary algorithms to get the 
optimal solution. In our experiment, we have used population 
size within 5 to 50 for different datasets.  

 
Fig. 6: Average and best (minimum) fitness for queen7_7 

dataset. 

V. Conclusion and Future Work 
In this paper, we proposed a Quantum-inspired 

Evolutionary Algorithm (QEA) for graph coloring problem 

(GCP). The main variation operator of our QEA is the rotation 

gate. The population of the solution is updated using only 

rotation gate. We compare best binary individual with all 

binary individuals in the population and update the Q-bit 

individual. Because of the nature of the encoding, in each 

generation, binary individual may become invalid and in that 

case binary individuals are corrected to obtain the valid 

solution. After certain generations, all or partial population are 

replaced with best binary individual to avoid local 

optimization. We start with m=d+1 colors, where d is the 

maximum out degree of the graph. The number m is the upper 

bound of the chromatic number. That means, in a single run, 

the QEA dynamically reduces the chromatic number starting 

with upper bound to the possible minimum number. Unlike the 

previous techniques, our QEA finds the minimum chromatic 

number in a single run reducing the total time significantly. 

We experiment with 36 datasets from [9] and [10]. For 29 

datasets, we found expected chromatic number as stated in [9] 

and [10]. For five datasets queen8_8.col, queen8_12.col, 

queen10_10.col, 2-FullIns_5.col and 5-FullIns_4.col, our QEA 

produce better result than the previous works. So we can say 

these are the major achievement of our algorithm over the 

previous works. In the future, we will try to improve the 

execution time of the algorithm. We also have plans to 

compare more results of our proposed approach with the 

results produced by other algorithm. 
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