

6

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-28

Multi-Scheduling Technique for Real-time Systems

on Embedded Multi-core Processors
[Abdulkadir Yaşar, Kayhan M. Imre]

Abstract— Recent studies have shown that today's embedded

systems require not only real-time ability but also general

functionality for running non-real-time applications. In order to

provide these two functionalities together on the same system,

several techniques and frameworks have been proposed.

Integrating different type operating systems on a multi-core

processor is one of the most favourable approaches for system

designers. However, this heterogeneous approach has some

drawbacks. This paper introduces Multi-scheduling method for

multi-core hardware platforms without running heterogeneous

operating systems concurrently. In this technique, there are two

schedulers in single operating system. One is for real-time

applications and the other is for general or non-real-time

applications. In Multi-scheduling approach, real-time and non-

real-time applications run in the same operating system

environment so the implementation and maintenance of the system

become easier than heterogeneous approaches. We have

implemented Multi-scheduling technique on Linux and

benchmarked the interrupt latencies and stability of real-time

applications. The results have shown that Multi-scheduling

technique can be profitable to provide the real-time functionality

for general purpose operating system.

Keywords—Multi-core, Multi-Scheduling, Embedded

Systems, Real-time, Scheduling, Operating System, Symmetric-

multiprocessing

I. Introduction
In the last decade, the processor manufacturers place

multiple processor cores in a single chip called System on
Chip (SoC) to speed up the computation, to improve the
performance and to reduce the cost. These processors may be
composed of two or more independent cores based on
symmetric or asymmetric multiprocessing architectures [1]. In
addition to desktop or server PCs, multi-core processors are
used in embedded systems for performance and economic
reasons.

A typical embedded system is dedicated to perform
functions such as real-time data control and digital signal
processing. Unsurprisingly, embedded systems also require
general non-real-time functionality as well as real-time (RT)
functionality. Combination of these two functionalities is one
of the most challenging problems for embedded and RT
system developers. In order to overcome this problem,
processor manufacturers usually produce heterogeneous multi-
core processors [1, 9]. In heterogeneous processors, each core
runs a different type of operating system (OS) to perform
required functionality. For example, in a dual-core processor,
a real-time operating system (RTOS) runs on one core, and a
versatile or general purpose OS runs on the other. Memory
and peripherals are isolated by hardware, or a low-level
software called hypervisor. On the other hand, in homogenous

processors, each core runs the same OS code, and share the
main memory, peripherals and other resources.

Migration from single-core to multi-core processor brings
a discussion about how to manage OS code over the cores in
SoC. There are two suggested modes; asymmetric-
multiprocessing (AMP) and symmetric-multiprocessing
(SMP). In AMP mode, each core has its own copy of OS
kernel code, and the codes are generally different from each
other (heterogeneous OSes). On the contrary, in SMP mode,
the same kernel code runs on each core synchronously
(homogenous OSes). SMP OS dynamically balances the work
between processor cores, and controls the resource sharing,
e.g., main memory, between the cores [5, 12].

Despite the fact that the heterogeneous OSes in AMP
mode are difficult and costly to maintain, they are widely used
in embedded RT systems [1]. The reason behind this fact is
that reserving the processor time for RT tasks in SMP mode is
not trivial. In AMP mode, one or more cores run a RTOS in
which RT application get the total control of the core(s) easily.
The RTOS has a special scheduler, e.g., EDF scheduler, to
meet strict timing constraints [11]. On the other hand, a
general purpose OS has a scheduler, e.g., CFS, which gives
tasks a fair share of a CPU’s time.

It is essential that a RT system must respond actions or
produce results within predefined timeframes [11]. In a RTOS,
a task must gain immediate access to the processor to produce
a timely response to an interrupt or action [9, 11, and 12].
Therefore, processor should be waiting in idle state for the
most of its time. Although the processing speed is important
for the quality of a RT system, it is not the primary purpose of
an RT system. The primary purpose of an RTOS is to
eliminate the surprises [12]. In other words; RTOS must
provide a solid infrastructure to guarantee the response time of
a task. However, in a general purpose OS, time for the
completion of a task is unpredictable and may diverge.

In this work, we propose a new technique called Multi-
scheduling for SMP multi-core embedded processors to enable
to run RT tasks along with the general purpose non-real-time
tasks. We have implemented our approach in Linux since it is
the most widely used OS in embedded systems. In our
approach, there are two schedulers running in a single OS
environment. After booting on SMP system, one or more
cores, selected in kernel configuration, change their
scheduling policy to an appropriate RT scheduler. Therefore,
RT tasks and general tasks are run on separate cores. We have
measured the interrupt latencies and average task completion
times of the multi-scheduling policy on a system containing an
ARM Cortex-A9 dual-core processor. We have also carried
out the same measurements for the standard kernel on the
same hardware. Our results show that multi-scheduling

7

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-28

technique can be used to bring RT functionality to SMP
homogenous multi-core processors.

The remainder of this paper is organized as follows:
Section II reviews related works; Section III introduces the
Multi-scheduling technique and its implementation on Linux;
Section IV identifies the benchmark and comparison results;
and finally conclusions and future works are drawn in Section
V.

II. Related Work
Heterogeneous operating systems are widely used in

embedded systems to integrate real-time and non-real-time
functionality together. A low-level software called hypervisor
is used to partition the hardware resources between OSes [4].
Moreover, physical partitioning techniques have been
developed to run RTOS and general OS simultaneously on
same system [1]. However, the physical partitioning
techniques require hardware modifications on SoC to control
the access lists to resources.

Linux is widely used OS in not only servers and desktops
but also embedded systems. However, it suffers from lack of
hard RT functionality. Although it is originally developed as
general purpose OS, several RT infrastructures have been
adopted to Linux kernel in recent years [5], [6]. The RT-patch
provides several modifications such as low latency support
and pre-emption into the standard Linux kernel to yield hard
RT support [12]. Nowadays, the standard Linux also can be
used in RT application but it provides soft RT infrastructure
[4]. Researchers in [7] made first experimental analysis of RT
performance of the standard Linux primitives on multi-core
platforms.

In the recent years, numerous scheduling methods have

been suggested for homogenous multi-core processors.

Authors in [2] implemented a hybrid scheduling method to

make the parallelism by partitioning an application into some

parallel tasks. In [3] and [8], the authors implement a task

splitting semi-partitioned scheduler for multi-core embedded

systems. They show that semi-partitioned scheduling has

better performance and low overhead than other partition-

based scheduling methods. Moreover, authors in [14] have

developed a loadable RT scheduler suite to support different

scheduling algorithms on multi-core platforms. In [10], the

researchers discuss an approach for supporting soft real-time

periodic tasks in Linux running on high performance

asymmetric multi-core platforms, or AMPs. In [15], a

scheduling method is suggested for real-time systems

implemented for multi-core platforms that encourage

individual threads of multi-threaded real-time tasks to be

scheduled together. The authors in [16] propose a hybrid

approach for scheduling real-time tasks on large-scale multi-

core platforms with hierarchical shared caches. In this

approach, a multi-core platform is partitioned into clusters.

Tasks are permanently assigned to the clusters, and scheduled

within each cluster using the pre-emptive global EDF

scheduling algorithm.

III. Materials & Methods
In this section, we will introduce what Multi-scheduling

technique is and how it works. Then, we will mention about

the implementation of Multi-scheduling technique in Linux.

A. Multi-scheduling Technique
Multi-scheduling is developed for SMP operating systems,

where each core runs the same kernel code synchronously as if

the system has a single-core processor. Most of the modern

OSes support the SMP system. In SMP systems, one of the

cores, generally CPU core-0 called primary-core is responsible

for initialization of the hardware and all subsystems at boot

time. After successful initialization, the same kernel code is

copied to the other cores, called secondary-cores, on the SoC.

Then, the tasks are assigned to cores to be run and load-

balancing mechanism balances the work on the cores running

the same scheduling policy.

OS kernel is composed of threads a.k.a. kernel threads such

as interrupt handlers and kernel services. They are also

handled by the system scheduler, running periodically

depended on the CPU architecture and triggered by the CPU

timer. In a multi-core platform, each CPU is triggered by its

timer and runs the same scheduler code. For SMP systems, all

kernel threads share the same context in the main memory.

Therefore, additional synchronization codes, i.e., spinlocks,

are used to provide consistency between multiple threads. All

tasks stored in the memory are handled by schedulers in CPUs

synchronically [1, 6].

Figure 1. Illustration of Multi-scheduling

In Multi-scheduling technique, the shared context is copied

and modified for one or more of the secondary-cores. We

called these cores rt-cores where RT tasks will be handled on.

Rt-cores will change its scheduling policy for RT task

scheduling in their copied context. Moreover, load-balancing

mechanism which balances the work between cores does not

interfere with rt-cores; in other words, these cores are isolated

from the other cores. For example, in Figure 1, CPU core-0 of

a dual-core embedded system initializes and configures the

hardware, and then, the core-1 runs a secondary startup code

to initiate itself. In this secondary startup code for core-1, the

scheduling policy of the second kernel image is changed to an

RT scheduler and the load-balancing mechanism becomes

aware of this.

8

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-28

B. Implementation of Multi-scheduling
Multi-scheduling technique is developed for Linux. It is

initialized and started to run in the boot process. The boot

process of embedded systems is different from desktop or

server PCs. When the power button is pressed, a small boot-

loader software finds the OS image and loads it to the main

memory and then OS initialization process begins. In the

Linux SMP environment, core-0 is primary-core for

initialization. When the initialization is completed, primary-

core will signal the secondary cores to boot a specific kernel

code called secondary_start_kernel(). When the secondary

cores boot the same Linux image, they will enter Linux at a

specific location so they simply initialize the resources (e.g.

MMU and caches) specific to their cores only. The secondary

cores don’t reinitialize resources that have already been

configured, and they just execute the idle process with PID 0.

Consequently, each core on the system has its own

environment containing a scheduling policy triggered by a

timer specific to the core.

We have carried out some modifications to the Linux

operating system in both user-space and kernel-space. In

kernel-space, secondary_start_kernel() code has been

modified to run a different scheduling policy for RT

functionality. First of all, rt-cores are selected in kernel

configuration for multi-scheduling and the selected core list is

stored to allow tasks to run on them later. In

secondary_start_kernel(), the shared context is copied for rt-

cores and the rt-cores re-initialize the scheduling mechanism.

Each rt-core changes its scheduling policy to SCHED_RR or

SCHED_FAIR policies, defined in the Linux Kernel for RT

applications, rather than SCHED_OTHER, aka CFS

(Completely Fair Scheduling) default policy in Linux.

Figure 2. Detailed view of the Multi-scheduling enabled Operating System

Environment

In Linux, each core has its own task queue (runqueue) for

keeping the task to be run on that core. The other

modifications in kernel-space have been applied to Linux

load-balancing mechanism working on the runqueues to

balance the tasks between CPU cores on the system. The load

balancing mechanism for rt-cores does not interfere with the

corresponding mechanism for the cores reserved for non-real-

time tasks. Consequently, the whole environment is

partitioned into two separate environments; RT and non-RT.

The tasks are also split into two groups, and each task runs on

a corresponding core depending on its type whether it is RT or

non-RT. This is depicted in Figure 2.

Apart from these modifications in kernel-space, some

additions more are needed in user-space for Multi-scheduling.

We have implemented a task-assigner utility to assign tasks

either to RT or non-RT partition. The utility runs a task first

and then changes its scheduling policy to SCHED_RR if the

task is for RT partition; otherwise the policy is set to

SCHED_FIFO for non-RT tasks. The RT tasks are assigned to

rt-cores, and the rest assigned to the other cores. In addition to

forking the task structure and changing the task’s scheduling

policy, the task-assigner updates the allowed core(s) list for

the task. Therefore, the tasks assigned to RT partition are

scheduled by the RT scheduler in the kernel space.

IV. Real-time Performance
Results and Discussions

We have tested the RT performance of Multi-scheduling

technique on the pandaboard widely used in Embedded

community as reference design. It has a dual-core ARM

cortex-A9 powered by TI’s OMAP4460 microprocessor.

Therefore one of the CPUs runs RT tasks and the other is for

IT tasks and general OS operations. We have prepared two

patches and applied the Linux Kernel version 3.4. One of the

patches called Msched-P1 runs RT tasks with SCHED_RR

scheduling policy and the other called Msched-P2 runs with

general Linux scheduling policy SCHED_OTHER.

Thanks to the Linux community, there are many RT

performance and benchmark test tools. For example, cyclictest

is one the of most known RT. It measures the amount of time

that passes between when a timer expires and when the thread

which set the timer actually runs [12]. This value is the latency

for that timer wakeup. As mentioned before, the interrupt

latencies should be minimum and all response durations must

be close as much as possible; in other words a RT system must

produce stable results for same work in any case. We used

cyclictest to measure interrupt latencies and gpio-toggle test to

estimate the stability.

At first, we have measured the interrupt latency of the

Standart Linux over CPU workload. In this test, we load work

increasingly to CPUs by using stress program widely used in

CPU tests. In Table 1, the more CPU stress increases, the more

the latency to interrupt lenghtens. This is because, the standart

Linux OS scheduler can not allocate enough time for timer

interrupts. It tries to share the resources to tasks fairly and do

not care about the RT tasks.

TABLE I. AVERAGE INTERRUPT LATENCY OF STANDART LINUX

Avg. Interrupt Latency of the Standart Linux over CPU work

CPU workload % 0 %20 %40 %60 %80 %100

Avg. Latency

(us)
84 3382 6570 10370 14706 17780

9

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-28

In Figure 3, cyclictest results are shown for Msched-P1 and

Msched-P2 patches. As you can see, although the CPU

workload increases, the average interrupt latency do not

change so much because the RT tasks run on a different CPU

and are not affected by non-RT tasks’ workload on the system.

This graph also says that SCHED_RR scheduling policy used

in Msched-P1 has better performance than SCHED_OTHER

used in Msched-P2. Moreover, in CPU idle, Multi-scheduling

patches nearly two times better performance than the standart

Linux.

Figure 3. Interrupt Latency results of Multi-scheduling patches over CPU

workload

Secondly, gpio-toggle test toggles a GPIO pin on the board

and estimates the duration. In Figure 4, the duration of

toggling in the standart Linux is not stable. Time for the

Figure 4. Scope output of GPIO toggling in the standart Linux

toggling changes in some cases as you can see on the falling

edge of the output signal. On the other hand, in Figure 5, the

duration for GPIO toggling in Multi-scheduling technique is

more stable and shorter about two times than the standard

Linux. As we mentioned before, the stabilization of processing

a task in any case is more important for RT systems. This

toggling test shows that the processing times of RT tasks is

stable in Multi-scheduling technique.

Figure 5. Scope output of GPIO toggling in Multi-scheduling enabled Linux

V. Conclusion
In this paper, we proposed a new approach Multi-

scheduling to run RT and non-RT tasks in a single operating

system. It is based on the partition of the cores in the multi-

core processor into two groups, and two different

environments are created for RT and non-RT tasks.

Multi-scheduling technique only separates the cores on the

system not the other resources such as main memory, USBs,

GPIOs and other controllers. In order to provide a better RT

and non-RT environment partition in the single OS, all

resources on the system must be separated. For example, if a

RT task and a non-RT task want to use the same resource, e.g.,

USB0, on the same time, it will reduce the overall

performance and may cause the deadlocks. The current Multi-

scheduling technique does not separate the other resources. In

this work, we just want to show that creating two different

environments may provide both RT and IT functionalities in

the single OS.

The interrupt latency and stability results have shown that

Multi-scheduling technique can be a good approach to provide

RT functionality for general OSes without using

heterogeneous OSes. On the contrary of heterogeneous

approach, a single OS environment is used for all tasks. This

provides two main advantages to system developers. One of

them is Inter-process communication between RT and non-RT

tasks. The other and more important advantage is about the

system development and maintenance. In heterogeneous

approach, system developers configure two different OS; a

general OS and a RTOS. A Failure in one of the

heterogeneous OSes causes the whole system come down.

Moreover, developers spend more time to learn different OS

environments. This may increases the costs for production.

Multi-scheduling is a valuable technique to provide RT

functionality for general purpose operating systems. It may be

considered as one of the most major approaches for Real-time

systems in multi-core embedded systems. For future work, we

want to extend Multi-scheduling technique to cover all

resources in the system. Moreover, we will provide tools to

control the Multi-scheduling from user-space easily.

References
[1] T. Nojiri, Y. Kondo, N. Irie, M. Ito, H. Sasaki, H. Maejima, “Domain

Partitioning Technology For Embedded Multicore Processors” Published
by the IEEE Computer Society, pp. 7-17, November 2009.

[2] P. Tan, “Task Scheduling of Real-time Systems on Multi-Core
Architectures” in Second International Symposium on Electronic
Commerce and Security (ISECS), Nanchang, China, May 2009.

[3] Y. Zhang, N. Guan, Y. Xiao, W. Yi, “Implementation and Empirical
Comparison of Partitioning-based Multi-core Scheduling” in Industrial
Embedded Systems (SIES), Sweden, June 15-17, 2011.

[4] S. Kai, Y. Liping, “Improvement of Real-time Performance of Linux 2.6
Kernel for Embedded Application”, Proc. of International Forum on
Computer Science-Technology and Applications (IFCSTA), December
25-27, 2009.

[5] N. Vun, H. F. Hor, J. W. Chao, “Real-time Enhancements for Embedded
Linux”, published in 14th IEEE International Conference on Parallel
and Distributed Systems (ICPADS), Melbourne, Australia, December 8-
10, 2008.

10

Proc. of the Intl. Conf. on Advances In Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-005-7 doi: 10.15224/ 978-1-63248-005-7-28

[6] C. Bi, Y. Liu, R. Wang, “Research of Key Technologies for Embedded
Linux Based on ARM”, in International Conference on Computer
Application and System Modeling (ICCASM 2010), Taiyuan, Chine,
October 22-24, 2010.

[7] Y. Zhang, C. Gill and C. Lu, “Real-Time Performance and Middleware
for Multiprocessor and Multicore Linux Platforms” in 15th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), Beijing, China, pp. 437-446,
August 24-26, 2009.

[8] M. Shekhar, A. Sarkar, H. Ramaprasad, F. Mueller, “Semi-Partitioned
Hard-Real-Time Scheduling Under Locked Cache Migration in
Multicore Systems” in 24th Euromicro Conference on Real-Time
Systems, Pisa, Italy, pp. 331-340, July 11-13, 2012.

[9] H. Tomiyama, S. Honda, H. Takada, “Real-Time Operating Systems for
Multicore Embedded Systems” in International SoC Design Conference
(ISOOC), 2008.

[10] J. M. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. H. Anderson,
“Soft real-time scheduling on performance asymmetric multicore
platforms,” Proc. of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium(RTAS'07), Bellevue, WA,
USA, April 3-6, 2007.

[11] A. Mohammadi and S. G. Akl, “Scheduling Algorithms for Real-Time
Systems” unpublished, supported by the Natural Sciences and
Engineering Research Council of Canada, 2005.

[12] S. Rostedt, D. V. Hart, “Internals of RT-patch” in Linux symposium,
Ottawa, Canada, July 18-20, 2007.

[13] R. Love, Linux Kernel Development 3rd Edition, published by Addison-
Wesley Professional, 2010.

[14] S. Kato, R. Rajkumar, and Y. Ishikawa, “A Loadable Real-Time
Scheduler Suite for Multicore Platforms,” Technical Report CMUECE-
TR09-12, 2009

[15] J. H. Anderson and J. M. Calandrino, “Parallel real-time task scheduling
on multicore platforms,” Proc. of The 27th IEEE Real-Time Systems
Symposium (RTSS’06), Rio de Janeiro, Brazil, December 5-8, 2006.

[16] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, “A hybrid real-
time scheduling approach for large-scale multicore platforms,” Proc. of
the 19th Euromicro Conference on Real-Time Systems (ECRTS'07),
Pisa, Italy, July 4-6, 2007.

About Author (s):

Abdulkadir Yaşar received the B.S.
degree and currently studying the M.S.

degree in Computer Science and

Engineering from Hacettepe University,
Ankara, Turkey, in 2011. He has been

working as Embedded and Real-time

Design Engineer in Aselsan Inc. since

2011.

His current research interests include the

hardware/software codesign and Real-time
system design for multiprocessor system-

on-chips.

Kayhan M. Imre received his B.Sc.,

M.Sc., degrees in Computer Engineering
from Hacettepe University, Ankara, Turkey

and his Ph.D. degree in Computer Science

from University of Edinburgh, Scotland, in
1985, 1987 and 1993 respectively. He is

currently an Assistant Professor at the

Computer Engineering Department,
Hacettepe University.

His research interests are in parallel

processing, parallel and distributed

simulation and real-time systems.

