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Abstract— Recent studies have shown that today's embedded 

systems require not only real-time ability but also general 

functionality for running non-real-time applications. In order to 

provide these two functionalities together on the same system, 

several techniques and frameworks have been proposed. 

Integrating different type operating systems on a multi-core 

processor is one of the most favourable approaches for system 

designers. However, this heterogeneous approach has some 

drawbacks. This paper introduces Multi-scheduling method for 

multi-core hardware platforms without running heterogeneous 

operating systems concurrently. In this technique, there are two 

schedulers in single operating system. One is for real-time 

applications and the other is for general or non-real-time 

applications. In Multi-scheduling approach, real-time and non-

real-time applications run in the same operating system 

environment so the implementation and maintenance of the system 

become easier than heterogeneous approaches. We have 

implemented Multi-scheduling technique on Linux and 

benchmarked the interrupt latencies and stability of real-time 

applications. The results have shown that Multi-scheduling 

technique can be profitable to provide the real-time functionality 

for general purpose operating system. 
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I.  Introduction 
In the last decade, the processor manufacturers place 

multiple processor cores in a single chip called System on 
Chip (SoC) to speed up the computation, to improve the 
performance and to reduce the cost. These processors may be 
composed of two or more independent cores based on 
symmetric or asymmetric multiprocessing architectures [1]. In 
addition to desktop or server PCs, multi-core processors are 
used in embedded systems for performance and economic 
reasons. 

A typical embedded system is dedicated to perform 
functions such as real-time data control and digital signal 
processing. Unsurprisingly, embedded systems also require 
general non-real-time functionality as well as real-time (RT) 
functionality. Combination of these two functionalities is one 
of the most challenging problems for embedded and RT 
system developers. In order to overcome this problem, 
processor manufacturers usually produce heterogeneous multi-
core processors [1, 9]. In heterogeneous processors, each core 
runs a different type of operating system (OS) to perform 
required functionality. For example, in a dual-core processor, 
a real-time operating system (RTOS) runs on one core, and a 
versatile or general purpose OS runs on the other. Memory 
and peripherals are isolated by hardware, or a low-level 
software called hypervisor. On the other hand, in homogenous 

processors, each core runs the same OS code, and share the 
main memory, peripherals and other resources.  

Migration from single-core to multi-core processor brings 
a discussion about how to manage OS code over the cores in 
SoC. There are two suggested modes; asymmetric-
multiprocessing (AMP) and symmetric-multiprocessing 
(SMP). In AMP mode, each core has its own copy of OS 
kernel code, and the codes are generally different from each 
other (heterogeneous OSes). On the contrary, in SMP mode, 
the same kernel code runs on each core synchronously 
(homogenous OSes). SMP OS dynamically balances the work 
between processor cores, and controls the resource sharing, 
e.g., main memory, between the cores [5, 12]. 

Despite the fact that the heterogeneous OSes in AMP 
mode are difficult and costly to maintain, they are widely used 
in embedded RT systems [1]. The reason behind this fact is 
that reserving the processor time for RT tasks in SMP mode is 
not trivial. In AMP mode, one or more cores run a RTOS in 
which RT application get the total control of the core(s) easily. 
The RTOS has a special scheduler, e.g., EDF scheduler, to 
meet strict timing constraints [11]. On the other hand, a 
general purpose OS has a scheduler, e.g., CFS, which gives 
tasks a fair share of a CPU’s time. 

It is essential that a RT system must respond actions or 
produce results within predefined timeframes [11]. In a RTOS, 
a task must gain immediate access to the processor to produce 
a timely response to an interrupt or action [9, 11, and 12]. 
Therefore, processor should be waiting in idle state for the 
most of its time. Although the processing speed is important 
for the quality of a RT system, it is not the primary purpose of 
an RT system. The primary purpose of an RTOS is to 
eliminate the surprises [12]. In other words; RTOS must 
provide a solid infrastructure to guarantee the response time of 
a task. However, in a general purpose OS, time for the 
completion of a task is unpredictable and may diverge. 

In this work, we propose a new technique called Multi-
scheduling for SMP multi-core embedded processors to enable 
to run RT tasks along with the general purpose non-real-time 
tasks. We have implemented our approach in Linux since it is 
the most widely used OS in embedded systems. In our 
approach, there are two schedulers running in a single OS 
environment. After booting on SMP system, one or more 
cores, selected in kernel configuration, change their 
scheduling policy to an appropriate RT scheduler. Therefore, 
RT tasks and general tasks are run on separate cores. We have 
measured the interrupt latencies and average task completion 
times of the multi-scheduling policy on a system containing an 
ARM Cortex-A9 dual-core processor. We have also carried 
out the same measurements for the standard kernel on the 
same hardware. Our results show that multi-scheduling 
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technique can be used to bring RT functionality to SMP 
homogenous multi-core processors. 

The remainder of this paper is organized as follows: 
Section II reviews related works; Section III introduces the 
Multi-scheduling technique and its implementation on Linux; 
Section IV identifies the benchmark and comparison results; 
and finally conclusions and future works are drawn in Section 
V. 

II. Related Work 
Heterogeneous operating systems are widely used in 

embedded systems to integrate real-time and non-real-time 
functionality together. A low-level software called hypervisor 
is used to partition the hardware resources between OSes [4]. 
Moreover, physical partitioning techniques have been 
developed to run RTOS and general OS simultaneously on 
same system [1]. However, the physical partitioning 
techniques require hardware modifications on SoC to control 
the access lists to resources. 

Linux is widely used OS in not only servers and desktops 
but also embedded systems. However, it suffers from lack of 
hard RT functionality. Although it is originally developed as 
general purpose OS, several RT infrastructures have been 
adopted to Linux kernel in recent years [5], [6]. The RT-patch 
provides several modifications such as low latency support 
and pre-emption into the standard Linux kernel to yield hard 
RT support [12]. Nowadays, the standard Linux also can be 
used in RT application but it provides soft RT infrastructure 
[4]. Researchers in [7] made first experimental analysis of RT 
performance of the standard Linux primitives on multi-core 
platforms. 

In the recent years, numerous scheduling methods have 

been suggested for homogenous multi-core processors. 

Authors in [2] implemented a hybrid scheduling method to 

make the parallelism by partitioning an application into some 

parallel tasks. In [3] and [8], the authors implement a task 

splitting semi-partitioned scheduler for multi-core embedded 

systems. They show that semi-partitioned scheduling has 

better performance and low overhead than other partition-

based scheduling methods. Moreover, authors in [14] have 

developed a loadable RT scheduler suite to support different 

scheduling algorithms on multi-core platforms. In [10], the 

researchers discuss an approach for supporting soft real-time 

periodic tasks in Linux running on high performance 

asymmetric multi-core platforms, or AMPs. In [15], a 

scheduling method is suggested for real-time systems 

implemented for multi-core platforms that encourage 

individual threads of multi-threaded real-time tasks to be 

scheduled together. The authors in [16] propose a hybrid 

approach for scheduling real-time tasks on large-scale multi-

core platforms with hierarchical shared caches. In this 

approach, a multi-core platform is partitioned into clusters. 

Tasks are permanently assigned to the clusters, and scheduled 

within each cluster using the pre-emptive global EDF 

scheduling algorithm. 

III. Materials & Methods 
In this section, we will introduce what Multi-scheduling 

technique is and how it works. Then, we will mention about 

the implementation of Multi-scheduling technique in Linux.  

A. Multi-scheduling Technique 
Multi-scheduling is developed for SMP operating systems, 

where each core runs the same kernel code synchronously as if 

the system has a single-core processor. Most of the modern 

OSes support the SMP system. In SMP systems, one of the 

cores, generally CPU core-0 called primary-core is responsible 

for initialization of the hardware and all subsystems at boot 

time. After successful initialization, the same kernel code is 

copied to the other cores, called secondary-cores, on the SoC. 

Then, the tasks are assigned to cores to be run and load-

balancing mechanism balances the work on the cores running 

the same scheduling policy.  

OS kernel is composed of threads a.k.a. kernel threads such 

as interrupt handlers and kernel services. They are also 

handled by the system scheduler, running periodically 

depended on the CPU architecture and triggered by the CPU 

timer. In a multi-core platform, each CPU is triggered by its 

timer and runs the same scheduler code. For SMP systems, all 

kernel threads share the same context in the main memory. 

Therefore, additional synchronization codes, i.e., spinlocks, 

are used to provide consistency between multiple threads. All 

tasks stored in the memory are handled by schedulers in CPUs 

synchronically [1, 6]. 

 
Figure 1.  Illustration of Multi-scheduling 

In Multi-scheduling technique, the shared context is copied 

and modified for one or more of the secondary-cores. We 

called these cores rt-cores where RT tasks will be handled on.  

Rt-cores will change its scheduling policy for RT task 

scheduling in their copied context. Moreover, load-balancing 

mechanism which balances the work between cores does not 

interfere with rt-cores; in other words, these cores are isolated 

from the other cores. For example, in Figure 1, CPU core-0 of 

a dual-core embedded system initializes and configures the 

hardware, and then, the core-1 runs a secondary startup code 

to initiate itself. In this secondary startup code for core-1, the 

scheduling policy of the second kernel image is changed to an 

RT scheduler and the load-balancing mechanism becomes 

aware of this. 
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B. Implementation of Multi-scheduling 
Multi-scheduling technique is developed for Linux. It is 

initialized and started to run in the boot process. The boot 

process of embedded systems is different from desktop or 

server PCs. When the power button is pressed, a small boot-

loader software finds the OS image and loads it to the main 

memory and then OS initialization process begins. In the 

Linux SMP environment, core-0 is primary-core for 

initialization. When the initialization is completed, primary-

core will signal the secondary cores to boot a specific kernel 

code called secondary_start_kernel(). When the secondary 

cores boot the same Linux image, they will enter Linux at a 

specific location so they simply initialize the resources (e.g. 

MMU and caches) specific to their cores only. The secondary 

cores don’t reinitialize resources that have already been 

configured, and they just execute the idle process with PID 0. 

Consequently, each core on the system has its own 

environment containing a scheduling policy triggered by a 

timer specific to the core. 

We have carried out some modifications to the Linux 

operating system in both user-space and kernel-space. In 

kernel-space, secondary_start_kernel() code has been 

modified to run a different scheduling policy for RT 

functionality. First of all, rt-cores are selected in kernel 

configuration for multi-scheduling and the selected core list is 

stored to allow tasks to run on them later. In 

secondary_start_kernel(), the shared context is copied for rt-

cores and the rt-cores re-initialize the scheduling mechanism. 

Each rt-core changes its scheduling policy to SCHED_RR or 

SCHED_FAIR policies, defined in the Linux Kernel for RT 

applications, rather than SCHED_OTHER, aka CFS 

(Completely Fair Scheduling) default policy in Linux. 

 

 
Figure 2.  Detailed view of the Multi-scheduling enabled Operating System 

Environment 

In Linux, each core has its own task queue (runqueue) for 

keeping the task to be run on that core. The other 

modifications in kernel-space have been applied to Linux 

load-balancing mechanism working on the runqueues to 

balance the tasks between CPU cores on the system. The load 

balancing mechanism for rt-cores does not interfere with the 

corresponding mechanism for the cores reserved for non-real-

time tasks. Consequently, the whole environment is 

partitioned into two separate environments; RT and non-RT. 

The tasks are also split into two groups, and each task runs on 

a corresponding core depending on its type whether it is RT or 

non-RT. This is depicted in Figure 2. 

Apart from these modifications in kernel-space, some 

additions more are needed in user-space for Multi-scheduling. 

We have implemented a task-assigner utility to assign tasks 

either to RT or non-RT partition. The utility runs a task first 

and then changes its scheduling policy to SCHED_RR if the 

task is for RT partition; otherwise the policy is set to 

SCHED_FIFO for non-RT tasks. The RT tasks are assigned to 

rt-cores, and the rest assigned to the other cores. In addition to 

forking the task structure and changing the task’s scheduling 

policy, the task-assigner updates the allowed core(s) list for 

the task. Therefore, the tasks assigned to RT partition are 

scheduled by the RT scheduler in the kernel space. 

IV. Real-time Performance 
Results and Discussions 

We have tested the RT performance of Multi-scheduling 

technique on the pandaboard widely used in Embedded 

community as reference design. It has a dual-core ARM 

cortex-A9 powered by TI’s OMAP4460 microprocessor. 

Therefore one of the CPUs runs RT tasks and the other is for 

IT tasks and general OS operations. We have prepared two 

patches and applied the Linux Kernel version 3.4. One of the 

patches called Msched-P1 runs RT tasks with SCHED_RR 

scheduling policy and the other called Msched-P2 runs with 

general Linux scheduling policy SCHED_OTHER. 

Thanks to the Linux community, there are many RT 

performance and benchmark test tools. For example, cyclictest 

is one the of most known RT. It measures the amount of time 

that passes between when a timer expires and when the thread 

which set the timer actually runs [12]. This value is the latency 

for that timer wakeup. As mentioned before, the interrupt 

latencies should be minimum and all response durations must 

be close as much as possible; in other words a RT system must 

produce stable results for same work in any case. We used 

cyclictest to measure interrupt latencies and gpio-toggle test to 

estimate the stability. 

At first, we have measured the interrupt latency of the 

Standart Linux over CPU workload. In this test, we load work 

increasingly to CPUs by using stress program widely used in 

CPU tests. In Table 1, the more CPU stress increases, the more 

the latency to interrupt lenghtens. This is because, the standart 

Linux OS scheduler can not allocate enough time for timer 

interrupts. It tries to share the resources to tasks fairly and do 

not care about the RT tasks. 

TABLE I.  AVERAGE INTERRUPT LATENCY OF STANDART LINUX  

Avg. Interrupt Latency of the Standart Linux over CPU work 

CPU workload % 0 %20 %40 %60 %80 %100 

Avg. Latency 

(us) 
84 3382 6570 10370 14706 17780 
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In Figure 3, cyclictest results are shown for Msched-P1 and 

Msched-P2 patches. As you can see, although the CPU 

workload increases, the average interrupt latency do not 

change so much because the RT tasks run on a different CPU 

and are not affected by non-RT tasks’ workload on the system. 

This graph also says that SCHED_RR scheduling policy used 

in Msched-P1 has better performance than SCHED_OTHER 

used in Msched-P2. Moreover, in CPU idle, Multi-scheduling 

patches nearly two times better performance than the standart 

Linux. 

 
Figure 3.  Interrupt Latency results of Multi-scheduling patches over CPU 

workload 

Secondly, gpio-toggle test toggles a GPIO pin on the board 

and estimates the duration. In Figure 4, the duration of 

toggling in the standart Linux is not stable. Time for the 

 
Figure 4.  Scope output of GPIO toggling in the standart Linux 

toggling changes in some cases as you can see on the falling 

edge of the output signal. On the other hand, in Figure 5, the 

duration for GPIO toggling in Multi-scheduling technique is 

more stable and shorter about two times than the standard 

Linux. As we mentioned before, the stabilization of processing 

a task in any case is more important for RT systems. This 

toggling test shows that the processing times of RT tasks is 

stable in Multi-scheduling technique. 

 

 
Figure 5.  Scope output of GPIO toggling in Multi-scheduling enabled Linux 

V. Conclusion 
In this paper, we proposed a new approach Multi-

scheduling to run RT and non-RT tasks in a single operating 

system. It is based on the partition of the cores in the multi- 

core processor into two groups, and two different 

environments are created for RT and non-RT tasks. 

Multi-scheduling technique only separates the cores on the 

system not the other resources such as main memory, USBs, 

GPIOs and other controllers. In order to provide a better RT 

and non-RT environment partition in the single OS, all 

resources on the system must be separated. For example, if a 

RT task and a non-RT task want to use the same resource, e.g., 

USB0, on the same time, it will reduce the overall 

performance and may cause the deadlocks. The current Multi-

scheduling technique does not separate the other resources. In 

this work, we just want to show that creating two different 

environments may provide both RT and IT functionalities in 

the single OS. 

The interrupt latency and stability results have shown that 

Multi-scheduling technique can be a good approach to provide 

RT functionality for general OSes without using 

heterogeneous OSes. On the contrary of heterogeneous 

approach, a single OS environment is used for all tasks. This 

provides two main advantages to system developers. One of 

them is Inter-process communication between RT and non-RT 

tasks. The other and more important advantage is about the 

system development and maintenance. In heterogeneous 

approach, system developers configure two different OS; a 

general OS and a RTOS. A Failure in one of the 

heterogeneous OSes causes the whole system come down. 

Moreover, developers spend more time to learn different OS 

environments. This may increases the costs for production. 

Multi-scheduling is a valuable technique to provide RT 

functionality for general purpose operating systems. It may be 

considered as one of the most major approaches for Real-time 

systems in multi-core embedded systems. For future work, we 

want to extend Multi-scheduling technique to cover all 

resources in the system. Moreover, we will provide tools to 

control the Multi-scheduling from user-space easily. 
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