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Abstract— This paper covers application of an elitist self-

adaptive step-size search (ESASS) to optimum design of steel 

frame structures. In the ESASS two approaches are considered 

for improving the convergence accuracy as well as the 

computational efficiency of the original technique namely the so 

called self-adaptive step-size search (SASS). Firstly, an additional 

randomness is incorporated into the sampling step of the 

technique to preserve exploration capability of the algorithm 

during the optimization. Moreover, an adaptive sampling scheme 

is introduced to improve the quality of final solutions. Secondly, 

computational efficiency of the technique is accelerated via 

avoiding unnecessary analyses during the optimization process 

using an upper bound strategy. The numerical results 

demonstrate the usefulness of the ESASS in the sizing 

optimization problems of steel frame structures. 
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I.  Introduction  
Daily life is full of instances which need decision making 

about the best possible solution. By using the shortest path to 
reach the destination, shopping with a certain budget, or 
ordering our daily tasks, implicitly we try to find an optimum 
solution. Generally, time and cost limitations are the two 
common limitations in real life optimization instances. Similar 
to frequent daily problems, the field of engineering design 
includes a wide range of optimization problems as well. Even, 
it can be mentioned that engineering design without 
optimization is indeed not meaningful [1]. In particular the 
optimum design of a structural system is an attempt to find the 
best arrangement of solution variables that yields a minimum 
weight or cost design. Furthermore, for practical aspects the 
final design should satisfy a set of design constraints imposed 
with respect to a standard code. Basically, the main categories 
of traditional structural optimization techniques are 
mathematical programming [2] and optimality criteria [3, 4] 
approaches.  
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The well known shortcomings of traditional optimization 
methods are that these techniques are gradient-based and 
therefore typically work on the basis of continuous solution 
variables. Furthermore, computing the gradients of highly 
nonlinear objective functions of practical instances becomes 
another difficulty when dealing with these techniques. The 
most recent category of structural optimization techniques is 
referred to as non-traditional stochastic search methods or 
metaheuristics. These algorithms, such as genetic algorithms, 
particle swarm optimization, ant colony optimization, etc., are 
basically nature inspired approaches, which borrow their 
working principles from natural phenomena [5]. Different 
from traditional optimization techniques, metaheuristic 
algorithms do not perform any gradient based search and are 
able to handle both discrete and continuous solution variables. 
In addition, the stochastic nature of metaheuristics makes it 
more probable to find a near optimum solution even for 
complicated practical optimization instances. Since the 
optimization approaches based on metaheuristics are robust 
and successful in locating the optimal solutions, these 
algorithms can efficiently be employed for solving practical 
structural optimization problems. The state-of-the-art reviews 
of metaheuristics as well as their applications in structural 
design optimization can be found in Refs. [6-8]. 

Although meta-heuristic algorithms are generally 
conceived to be successful in locating promising solutions for 
challenging engineering optimization problems, the slow rate 
of convergence towards the optimum and the need for a high 
number of structural analyses are known as the main 
shortcomings of these techniques in practical structural design 
optimization. Mostly response computations of designs 
sampled during a search process mostly occupies 85-95% 
workload of a metaheuristic technique [9], and therefore large 
number of structural analyses substantially increases the total 
computing effort. One solution to this, is to reduce the total 
computational time by taking advantage of high performance 
computing methods, such as parallel or distributed computing 
techniques [9]. The idea in this approach is to distribute the 
total workload of the optimization algorithm amongst 
multiprocessors of a single computer or within a cluster of 
computers connected to each other via local area network. 
Another approach, which is more straightforward and easier to 
apply, is to develop efficient strategies for diminishing the 
number of structural analyses required in the optimization 
process. The latter, can be performed through developing 
efficient optimization techniques capable of locating 
reasonable solutions using less computational effort. Recently, 
an upper bound strategy (UBS) is proposed in Kazemzadeh 
Azad et al. [10], where unnecessary structural analyses are 
avoided during the course of optimization through a simple 
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and efficient mechanism. The key issue in the UBS is to 
identify those candidate solutions which have no chance to 
improve the search during the iterations of the optimum design 
process. After identifying those non-improving solutions, they 
are directly excluded from the design population without any 
structural analysis performed, resulting in a significant saving 
in computational effort [10]. 

Self-adaptive step-size search (SASS) algorithm is a 
recently proposed optimization technique based on a self-
adaptive hill-climbing strategy [11]. In addition to its ability 
for tackling practical optimization problems, the facts that it 
has a simple algorithmic structure and needs relatively a small 
number of parameters for implementation are amongst the 
advantageous features of this technique. In Nolle [12] the 
SASS algorithm is successfully employed to find the optimum 
profiles for a simulated rolling mill. Nolle [13] also applied 
this algorithm to automated Langmuir probe tuning problem 
and reported numerical results indicating the favorable 
application of the technique. Later, Nolle and Bland [14] 
demonstrated the promising performance of the SASS in 
automatic optimization of standard engineering design 
problems. 

This study covers application of a recently developed 
ESASS algorithm [15] to discrete sizing of steel frame 
structures. In the ESASS two approaches are considered for 
improving the convergence accuracy as well as the 
computational efficiency of the original technique. Firstly, an 
additional randomness is incorporated into the sampling step 
of the technique to preserve exploration capability of the 
algorithm during the optimization. Moreover, an adaptive 
sampling scheme is introduced to improve the quality of final 
solutions. Secondly, computational efficiency of the technique 
is accelerated via avoiding unnecessary analyses during the 
optimization process using an upper bound strategy. The 
numerical results demonstrate the usefulness of the ESASS in 
the sizing optimization problems of steel frame structures. 

II. Problem Formulation 
For a steel structure composed of mN  structural members 

collected in dN  member groups, the sizing optimization 

problem can be formulated as follows.  

The objective is to find a vector of integer values such as 
I  (Eq. 1) representing the sequence numbers of steel sections 

assigned to dN  member groups 
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to minimize the penalized weight ( )(Xf ) of the structure, 
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In the above equations iA  and i  are the length and unit 

weight of the steel section adopted for member group i, 

respectively, tN  is the total number of members in group i, 

jL  is the length of the member j which belongs to group i, and 

)(X is the penalty function employed for handling the 

constraints. The optimization constraints consist of the 
limitations imposed on overall structural response and 
behavior of individual members which are addressed in the 
numerical examples section.  

III. The SASS Algorithm 
The present section covers the optimum design procedure 

based on the SASS algorithm [14]. The algorithm has a 
relatively simple outline, which consists of the following 
steps: 

Step 1. Initial population: Form an initial population by 
spreading m solution candidates over the design space. Each 

solution candidate iX is referred to as a particle ),...,1( mii P  

in the SASS algorithm and is considered as a vector of n 

design variables, i.e. ),...,,( 21 iniii vvvP . 

Step 2. Evaluation of the initial population: Calculate the 
objective function value of each particle through Eq. (2). The 
fitness value of each particle is computed by either inverting 
its objective function value, or subtracting it from a constant 
number chosen large enough to yield always a positive value 
for all particles.  

Step 3. Selecting a particle for improvement: Select a 
particle for improvement in an optimization cycle. In this 

process each particle ),...,1( mii P  is selected once according 

to its sequence number in the population, and the improvement 
of this particle is performed as discussed in the following 
steps. 

Step 4. Defining a maximum step size vector ( imaxS ): For 

each particle iP  selected in the previous step, choose two 

different particles kP  and lP  randomly from the population to 

define the neighborhood of the particle iP based on a 

maximum step size vector imaxS , 

 

),...,,( 1 maxinmaxi2imaximax SSSS                     (4)  

 

ljkjij vvS max             for    j=1, 2, . . ., n                (5)  

 

where, each component of imaxS  is equal to the absolute value 

of the difference between the corresponding design variables 
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in the  particles
kP  and

lP .  

Step 5. Sampling: Sample a new particle iP  in the 

neighborhood of the selected particle iP  based on  imaxS  using 

Eqs. (6) and (7), 

 

 ijijij stepvv                              (6) 

 

 ijijij SSstep maxmax ,   for   j=1, 2, . . ., n            (7) 

 

where ijv  and ijv  are the j-th design variable in the particles iP  

and iP  respectively, and ijstep is any number randomly chosen 

between the range  ijij SS maxmax , using a uniform 

distribution. 

Step 6. Evaluation of the sampled particle: Calculate the 

fitness value of the newly sampled particle iP . 

Step 7. Updating: Compare the sampled particle iP  with 

the original particle iP based on their fitness values. If 

)()( ii ff PP   then iP is updated and replaced by iP , 

otherwise iP  is retained. 

Step 8. Termination: Go to Step 3 until a stopping criterion 
is satisfied, which can be imposed as a maximum number of 
iterations or no improvement of the best design over a certain 
number of iterations. It should be noted that one cycle in 
SASS is composed of m iterations.  

IV. The ESASS Algorithm 
A reformulation of the SASS algorithm is proposed in Ref. 

[15] to improve the efficiency of the algorithm in structural 
design optimization problems. The resulting enhancement of 
the technique is referred to as elitist self-adaptive step-size 
search (ESASS) algorithm. The ESASS algorithm exhibits 
some superiority with respect to its standard variant in terms 
of both convergence accuracy and computational efficiency. In 
the following the enhancements in the ESASS algorithm are 
described in details. 

In the SASS algorithm typically the components of step 

size vector imaxS  are large in the initial cycles due to a random 

generation of the initial population, and they tend to decrease 
adaptively with the convergence of the population as the 
search goes on. This self-adaptive nature of the algorithm is 
intended to provide a suitable search mechanism by sampling 
new particles in a restricted, yet more favorable region of the 
design space in the following cycles. However, when the 
performance of the algorithm is investigated through 
numerical examples, it is observed that the imaxS  values tend 

to become very small or even zero after a certain number of 
cycles, resulting in negligible or sometimes no changes in the 

generated particles. It follows that exploration ability of the 
algorithm vanishes in time, leading to degenerated or 
sometimes totally disabled search process by the SASS 
algorithm. As a remedy to this problem, Eq. (6) is somewhat 
modified in the proposed ESASS algorithm. An additional 

term, 
ijrand , based on a standard normal distribution, )1,0(N , 

with a mean of zero and standard deviation of 1, is used in 

each iteration with a probability of pR  as follows: 

                     
                  

ijijijij randstepvv                          (8) 
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where iju is a uniform random number selected between 0 and 

1. The rationale behind Eqs. (8) and (9) is to facilitate 
stochastic changes in the generation of new particles to keep 
alive the exploration capability of the algorithm especially 

when the imaxS values are decreased to unnecessarily low 

values. However, not all components of the particle are 
subjected to stochastic change, instead this is controlled by the 

probability pR . In addition, the use of a normally distributed 

random number in this formulation ensures that the small 
perturbations occur more often than the large ones. 

On the other hand, some recently developed metaheuristic 
optimization algorithms based on elitist strategies have been 
found to be very efficient in locating optimum or near-
optimum solutions while tackling complicated design 
optimization problems [16-18]. For instance, two enhanced 
metaheuristic algorithms [17, 18] that are specifically 
developed by the authors for handling sizing optimization 
problems work fundamentally on the basis of an elitist strategy 
where the new candidate solutions are generated in the vicinity 
of the current best design. 

An attempt is made to utilize an elitist strategy in the 
ESASS algorithm where the sampling of new particles (Step 
5) is encouraged in the neighborhood of the best-so-far 
particle in accordance with Eq. (10), 

 

                      ijij
best
ijij randstepvv                        (10) 

 

where
best

ijv refers to the j-th component of the best particle bestP  

found so far in the optimization process. It should be noted 
that Eqs. (8) and (10) offer two competitive formulations to be 
used in place of Eq. (6) for sampling new particles in 
searching the design space. Apparently, a more explorative 
search is provided with Eq. (8), whereas Eq. (10) motivates a 
more exploitative search by benefitting from previously 
visited best solution.  

To combine these two useful search features in an efficient 
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manner, an adaptive sampling scheme with the following 
pseudo-code is developed in the ESASS algorithm: 

 

 if (
si Ru  ) then 

- 
selectedP = 

iP  

- Sample new particle 
iP  using Eq. (8) 

 else 

- 
selectedP = 

bestP  

- Sample new particle
iP  using Eq. (10)  

where 
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In the proposed adaptive sampling scheme a new particle 

iP  is generated by applying either one of these two sampling 

equations (Eq. 8 and Eq. 10) probabilistically. Here the 

sampling probability parameter  1,0sR  controls the 

sampling scheme to be implemented when generating a new 

particle. For each particle, a uniform random number iu  is 

generated anew between 0 and 1, and at times when 
si Ru  , the 

new particle is sampled using Eq. (8), otherwise it is generated 
using Eq. (10). It follows that the probability of sampling a 
new particle with Eq. (8) and Eq. (10) is 

sR and 
sR1 , 

respectively. The 
sR parameter is initially set to 0.5 to give an 

equal chance to either sampling scheme in the beginning. 
However, when iteration of a cycle is completed (i.e. when m 

number of particles are sampled and evaluated in a cycle) sR is 

updated adaptively using Eq. (11), and this way the search is 
biased towards the sampling scheme that exhibits a better 
performance at the previous iteration. 

In Eq. (11),
t

sR  and 
1t

sR  represent the sampling probability 

parameters at cycles t and t+1, respectively. Accordingly, if 

the best design bestP  is improved by a particle sampled using 

Eq. (8) at the previous iteration, sR is increased by 0.01; 

otherwise if bestP  is improved by a particle sampled using Eq. 

(10), then sR  is lowered by 0.01. No update of sR  is carried 

out if bestP  is not improved at the previous iteration.  

On the other hand the computational efficiency of the 
ESASS algorithm is accelerated via the recently developed 
UBS method [10]. In this approach, basically the penalized 
weight of a current solution is considered as an upper bound 

limit for the net weight of a newly generated solution. 
Accordingly, a new solution with a net weight greater than this 
limit is excluded from the structural analysis stage. This 
strategy is used in the ESASS algorithm as follows. Here, after 

a new particle iP  is sampled in Step 5 in the vicinity of a 

selected particle iP or bestP , first the net weight of iP , 

i.e. )( iW P , is calculated only; not the penalized weight. This 

computation is straightforward and can be done with a trivial 

computational effort. If iP  has a net weight smaller than or 

equal to the penalized weight of the selected 

particle )( selectedf P , the structural analysis of the new particle is 

processed and its penalized weight is computed. In the 

opposite case, i.e. )( iW P > )( selectedf P , however, the upper 

bound rule is activated and iP  is automatically excluded from 

the structural analysis phase required for response 
computations in Step 6. 

V. Numerical Example 
The design example covered in this section is a 135-

member steel frame. The optimum solution found for this 
structure with the ESASS algorithm is compared to those 
achieved using other contemporary metaheuristic algorithms.  

A. 135-Member Steel Frame 
The first optimization instance is a 3-story steel frame 

depicted in Figure 1, composed of 135 members including 66 
beam, 45 column and 24 bracing elements. The stability of 
structure is provided through moment-resisting connections as 
well as inverted V-type bracing systems along the x direction. 
For practical fabrication requirements the 135 members of the 
frame are collected under 10 member groups. For design 
purpose, the frame is subjected to 10 load combinations to 
ASCE 7-98 [19]. Further details for this example can be found 
in Ref. [10]. 

Discrete sizing of the frame is previously carried out in 
Ref. [10] via some contemporary metaheuristics, i.e. the upper 
bound strategy (UBS) integrated big bang-big crunch 
algorithm (UBB-BC), as well as its two enhanced variants i.e. 
UBS integrated modified and exponential big bang-big crunch 
algorithms (UMBB-BC and UEBB-BC). Moreover, this 
instance is also solved in Ref. [20] using a UBS integrated 
particle swarm optimization algorithm (UPSO). 

Table 1 presents a comparison of optimum solutions 
located using different algorithms. As can be seen from this 
table, the ESASS yields a design weight of 44.33 ton for this 
example. Other solutions obtained are 38.91 ton by UEBBBC, 
45.67 ton by UMBB-BC, 47.3 ton by UBB-BC, and 55.66 ton 
by UPSO. These design weights are obtained using 1542 by 
ESASS, 1235 analyses by UEBBBC, 1794 analyses by 
UMBB-BC, 880 analyses by UBB-BC, and 1574 analyses by 
UPSO. It can be observed that the ESASS algorithm shows a 
promising performance which is comparable to the 
aforementioned contemporary enhanced optimization 
algorithms both in terms of solution quality as well as 
computational efficiency. Furthermore, the ESASS 
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optimization algorithm needs few parameters for 
implementation. 

 
            

Figure 1.  135-Member Steel Frame 

  

TABLE I.  COMPARISON OF RESULTS FOR 135-MEMBER STEEL FRAME 

Sizing 
variables 

UPSO  
[20] 

UBB-BC  
[10] 

UMBB-
BC [10] 

UEBB-
BC [10] 

ESASS 

1 W8X28 W10X39 W30X90 W21X62 W8X28 

2 W33X118 W27X84 W14X48 W14X48 W36X160 

3 W40X167 W40X149 W40X215 W36X150 W18X60 

4 W14X53 W18X65 W27X84 W21X68 W14X53 

5 W14X30 W21X44 W14X34 W18X40 W14X22 

6 W24X55 W16X40 W12X35 W18X35 W16X31 

7 W16X26 W10X22 W18X35 W16X26 W18X40 

8 W14X30 W27X84 W21X44 W8X24 W8X24 

9 W40X149 W16X26 W10X22 W16X26 W6X15 

10 W27X84 W21X44 W6X15 W6X15 W16X50 

Weight 

(ton) 
       55.66        47.3       45.67     38.91   44.33 

Analyses          1574  880      1794        1235      1542 

 

VI. Conclusion  
In this paper application of the recently developed ESASS 

algorithm to optimum design of steel skeletal structures is 
presented. Basically, in the ESASS two strategies are 
considered for improving the convergence accuracy as well as 
the computational efficiency of the original technique. On the 
one hand, an additional randomness is incorporated into the 
sampling step of the technique to preserve exploration 
capability of the algorithm during the optimization. On the 
other hand, an adaptive sampling scheme is introduced to 
improve the quality of final solutions. Furthermore, as a result 
of integrating the UBS with the ESASS algorithm the total 
number of required structural analyses is reduced. The 
numerical investigations indicate a promising performance of 
the ESASS algorithm with an acceptable level of 
comparability to the contemporary enhanced optimization 
algorithms both in terms of solution quality as well as 

computational efficiency.  
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