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Abstract—We introduce a truss decomposition algorithm for 

bipartite graphs. A subgraph G of a graph is called k-truss if 

there are at least k-2 triangles containing any edge e of G. By a 

standard breadth-first-search algorithm, we can compute the 

truss decomposition for large graphs. To extract a dense 

substructure that represents community in graph G, this method 

avoids the intractable problem of clique detection. The truss 

decomposition is not, however, applicable to the bipartite graphs 

due to its definition. For this problem, we have proposed quasi-

truss decomposition introducing an additional set of edges. For 

this decomposition, there is another problem such that dense 

subgraphs G1 and G2 are connected with a small number of edges. 

The previous algorithm detects the sparse structure H = G1 ⋃ G2 

as quasi-truss due to the definition. In this paper, we improve the 

algorithm to extract denser substructures by removing such 

sparse edges with a top-down strategy. The extended algorithm 

has been implemented, and compared its performance with the 

previous algorithm for bipartite graphs obtained from real data.  

Keywords—k-truss, community extraction, bipartite graph. 

I.  Introduction 
Given a graph G, the communities are interpreted as 

cohesive subgraphs in G. The problem of identifying 
communities has attracted much attention recently due to the 
increased interest in studying various graphs with complicated 
structures [1]. It helps in analyzing graph structures, and 
mining useful information from graph data. Numerous 
techniques for data mining have been proposed for 
approaching graph analysis problems from different aspects 
[2]. Therefore, we focus on this framework of community 
discovery, and apply it to an attractive domain of data, such as 
social networks. 

In this research, we consider the problem of extracting 
communities in a bipartite graph using the notion of truss, 
which is a  substructure in a graph. Originally, the truss is 
defined as a cohesive subgraph composed of triangles, i.e., 
cliques with three nodes, in a graph [3], and the truss 
decomposition algorithm for extracting dense subgraphs 
hierarchically based on truss structure is proposed in [4].  
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A bipartite graph is a type of the common structure for 
modeling relations between two classes of objects, and is 
found in many real-world relations such as user-item relations 
in an online shop. Therefore, it is an important task to extract 
communities from a bipartite graph by applying an efficient 
algorithm such as the truss decomposition. However, the truss 
decomposition technique is not applicable to bipartite graphs 
since no triangle is contained in it. To expand the notion of 
truss to the class of bipartite graph, we introduce a new notion 
called quasi-truss. We also develop an efficient algorithm for 
bipartite graph decomposition, and examine the scalability of 
it with real-world bipartite data. 

We introduce an extended truss decomposition for bipartite 
graphs. A subgraph of a graph G is called k-truss if any edge e 
of G is in at least k - 2 triangles. By a standard breadth-first-
search algorithm, we can compute the truss decomposition for 
large graphs. When extracting a dense substructure community, 
this method avoids the intractable problem of clique detection. 
This simplicity is an advantage. The truss decomposition is not, 
however, applicable to the bipartite graphs due to the 
definition. For this problem, we have proposed quasi-truss 
decomposition of a bipartite graph H, i.e., H is transformed 
into H’ by adding the special edge (x, y) if there are two edges 
(x, z) and (y, z) in H, and the quasi-truss of H is obtained by 
removing all special edges from the truss of H’. For this 
decomposition, consider the case that two dense subgraphs G1 
and G2 are connected with a small number of edges. Then, the 

previous algorithm in [5] detects the structure H = G1 ⋃ G2 as 

quasi-truss due to the definition. In this paper, we improve the 
algorithm to extract more dense substructures by removing 
such sparse edges between dense graphs. We implemented the 
extended algorithm and compare its performance with the 
previous algorithm for bipartite graphs defined on real data.  

II. Related Works 
An interesting substructure in a graph is called community 

which is a subgraph densely connected by edges among nodes. 
According to the definition by Flake et al. [6], a community is 
a set of nodes in which each member has at least as many 
edges connecting to members as it does to non-members. This 
definition is unambiguous, and for any set of nodes, we can 
determine whether it is a community or not. 

In [7,8],  a community of a graph G = (V, E) is defined as a 

subgraph containing at least one clique, i.e., a subset V’ ⊆ V 

such that the subgraph in G induced by V’ is a complete graph. 
Generally, the clique is extracted as a set of the nodes with 
high degrees. For this reason, the nodes with relatively lower 
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degrees are liable to be ignored, and not so much effective for 
uniformly sparse graphs. Moreover, the problem of finding 
maximal cliques is computationally hard. Thus, in the last 
decade, several efficient algorithms to find quasi-cliques, 
instead of extract cliques, have been proposed  [9]. 

The quasi-clique is a relaxation notion of clique, for 
example, on the density [10] or the degree [11, 12]. However, 
the problem of finding these quasi-cliques remains to be NP-
hard. Moreover, it may be difficult to capture the entire 
structure of communities in a graph since these subgraphs may 
substantially overlap, or completely be separated. 

To address these difficulties, a definition of dense 
subgraph called k-core has been proposed. It is defined as a 
maximal connected subgraph among all of its nodes with 
higher degree than k in G. Besides, the truss decomposition 
algorithm has been proposed: given a graph G, the k-truss of G 
is the largest subgraph of G in which any edge is contained in 
at least k - 2 triangles within the subgraph [13]. The problem 
of truss decomposition is to find all k-trusses where k ≥ 3. 

While the problem of finding the densest subgraph is NP-
hard, there is an efficient polynomial algorithm for the k-truss 
detection. From the point of view of the clique approximation, 
the k-truss is better than k-core [14,15], which is a well-known 
subgraph for community discovery. For the problem of finding 
all k-trusses in a graph, i.e., truss decomposition problem, an 
efficient in-memory algorithm [3] and two I/O-efficient 
algorithms have been presented to handle massive networks 
[4], and the efficiency of truss decomposition has been proved. 

Many interesting relations are represented by bipartite 
graphs, such as user-item relations in an online shop, the user-
music/movie relations of an online entertainment system. 
Recently, we have proposed an algorithm for enumerating 
triangles in a bipartite graph [5]. In this paper, we improved it, 
and propose a new quasi-truss decomposition algorithm. Our 
algorithm is based on the following fundamental algorithms 
for bipartite graphs. 

One is for testing bipartiteness to examine whether a graph 
is a bipartite or not [16]. The main idea of testing bipartiteness 
algorithm is to assign every node with a certain color in order 
to distinguish the color of its parent in a preorder traverse. 
This provides a two-colored spanning tree which consists of 
the edges containing nodes to their parents. However, some 
nodes may not be colored properly. In the case of depth-first-
search, one of the two endpoints of every non-tree edge is 
another endpoint’s ancestor. These pairs of nodes have 
different colors when non-tree edges are found. An odd-cycle 
can be formed by the path from ancestor to descendant within 
the incorrect colored edges together. With such an evidence, 
the graph is not bipartite. Every edge should be colored 
properly if the algorithm is terminated without detecting any 
odd-cycle of this type. It returns a bipartite graph with colors. 

Another one is the matching algorithm on bipartite graph. 
Matching in a graph G = (V, E) is a subset of E such that no 
two edges share a common node. A node is matched if it is an 
endpoint of one of the edges in the matching. Matching 
problem is easier to solve by using bipartite graph than non-
bipartite graph in many cases, such as the popular Hopcroft-

Karp algorithm [17] for maximum cardinality matching which 
working correctly only with bipartite graphs. 

III. Basic Notion 
A clique consisting of three nodes is called a triangle. A 

truss is defined based on triangles embedded in a graph. For a 
threshold k, the k-truss is a type of cohesive subgraphs that 
represents the largest subgraph of G such that every edge is 
contained in at least k - 2 triangles within the subgraph. This 

value is called the support of edge e = (u, v) ∊ E(G), denoted 

by sup(e, G). When G is unnecessary to indicate, we denote 
just sup(e). The support of e in G is the number of triangles in 
G that contain e. Thus, the k-truss for k ≥ 2, denoted Tk, is a 

subgraph defined by the condition ∀e ∊ E(Tk) [sup(e, Tk) ≥ k - 

2].  

The task of truss decomposition is to find all k-truss in G 
for k ≥ 2 where k is the bounded by the degree of G. The truss 

number of an edge e in G is defined as max{k : e ∊ E(Tk)}, 

denoted by Ψ(e). From the definition of truss number, another 

definition k-class that denoted by Фk, defined as {e : e ∊ E(G), 

Ψ (e) = k}. Relatively, the k-truss is the edge induced 
subgraph from the set E(Tk) = ⋃i≥kФi. 

The Figure 1 Illustrates the k-truss decomposition of a 
given graph G. The edges are contained in different number of 

triangles in G. The 2-class Ф2 is the set of edges e with sup(e) 

= 0. The 3-class Ф3 is the set of edges with sup(e) = 1, i.e., for 

e = (x, y), there exist at least one node z such that (x, z), (y, z) ∊
E(G). The 4-class is analogous. 

 

Figure 1. Illustration of the 2-, 3-, 4-, and 5-truss decomposition 
 

From the k-classes, k-trusses of G can be obtained as 
follow. The 2-truss T2 is simply G itself. The 3-truss T3 is the 

subgraph formed by the edge set Ф2 ⋃ Ф3 ⋃ Ф4, etc. It can 

be verified that each edge of Tk is contained in at least k - 2 
triangles where 2 ≤ k ≤ 5. The k-trusses represent the 
hierarchical structures of G at different level of granularity. 
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IV. Quasi-truss Decomposition 
and Its Improvement 

A. Quasi-truss for Bipartite Graph 
Given a bipartite graph G = (V1 ⋃ V2, E), there is no edge 

connecting all nodes in V1 or V2. Obviously, a bipartite graph 
contains no triangles due to its characteristic. Thus, we extend 
the notion of k-truss to bipartite graph, named quasi-k-truss. 
Based on the definition of k-truss, we introduce a special edge 

e’ ∊ E’ to the bipartite graph G as follow. For any two distinct 

nodes u and v in the same node set, if at least one common 
neighbor of them in another node set, define the special edge 

(u, v) ∊ E’. The bipartite graph G is transformed to G’ = (V1 ⋃ 
V2, E ⋃ E’) such that E’ = {(u, v) | u, v ∊ V1 or u, v ∊ V2, and a 

node in V(G) is adjacent to u, v}. The substructures of G can 
be obtained by recursively removing the edges in which are 
contained in the triangles. 

Conceptually, the notion of quasi-k-truss is similar to k-
truss. To compute the quasi-k-truss, initially, every node in 
both V1 and V2 of the given bipartite graph G will be visited. 
The set of special edges is determined by checking whether 
any two adjacent nodes in the same node set connected by a 
special edge share at least one common neighbor node in 
another node set. The structure of the given bipartite graph and 
its special edges is illustrated in Figure 2.  

 

Figure 2. The generation of special edge in bipartite graph 

 

As shown in Figure 2, there are two types of edges in the 
bipartite graph: the original edges in E are depicted by solid 
lines, and the special edges in E’ exists between two nodes v1 
and v2 in V1, provided that v1 and v2 share a common neighbor 

node vh ∊ V2. Then, an imaginary triangle is formed by three 

edges {(v1, v2), (v2, vh), (v1, vh)}. By this preprocessing, a 
bipartite graph G is transformed into G’. The quasi-k-truss of 
G is a subset of G(E) obtained by removing all special edges 
from the k-truss of G’. 

The truss-like components in each hierarchy is illustrated 
by Figure 3. According to the definition of quasi-k-truss, the 

truss-like components consists of edges e ∊ E. The special 

edges e’ ∊ E’ is excluded. Initially, the 2-truss is the bipartite 

graph itself. The 3-truss contains all edges anchored in no less 
than a triangle. The 4-truss contains all edges anchored in no 
less than two triangles. It contains edges {(v1, h), (v2, h), (v3, h), 
(v4, j), (v4, k), (v5, k), (v5, l), (v5, m), (v6, l), (v6, m)}. The 5-
truss contains edges {(v1, h), (v5, k), (v5, l), (v5, m)}. The given 
bipartite graph is decomposed hierarchically. 

 

Figure 3. The quasi-k-truss decomposition in bipartite graph, where almost 
special edges are omitted due to the complication 

B. Improvement 
The algorithm for extracting quasi-k-truss have been 

proposed in [3]. However, this algorithm contains a drawback 
when the input bipartite graph is dense. Consider the situation 
that two complete bipartite graphs G1 and G2 that they are 
connected by an edge, shown as Figure 4. 

 

Figure 4. An example of quasi-k-truss detected by the improved algorithm 

 

The previous algorithm extracts the structure E(G1) ⋃ 
E(G2) ⋃ {e} because e is detected as an edge of higher quasi-k-

truss than other edge in G1 or G2. The reason is that e is most 
frequent edge appearing in triangles. To avoid such case, we 
develop an improved algorithm described in Algorithm 1. In 
this algorithm, we propose a method for removing those 
undesired edge e based on the frequency of triangles contain e. 
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Algorithm 1: Improved truss-decomposition algorithm 

・input graph G is transformed into G’ 

・T: the set of all triangles in G’ 

・q: the queue for graph traverse 

・e: an edge in E = E(G) 

・e’: a special edge in E’ = E(G’) 

・Q: maximum number of triangles with a single edge in E’ 

・C(e): number of adjacency edges of an edge e 

Input: G = (V1 ⋃ V2, E) 

Output: all detected subgraphs 

1. T := ∅ 

2. for all v ∊ (V1 ⋃ V2) do 

3.        q.enqueue(v) 

4.        while not q.empty() do 

5.              v := q.dequeue() 

6.             if (v1, vj) , (v1, vk) ∊ E(G) then 

7.                  e’ := (vj, vk) generated 

8.                 T = T ⋃ {t}, t={v1, vj, vk} 

9.            end 

10.            transform G into G’ = (V1 ⋃ V2, E ⋃ E’) 

11.       end 

12. end 

13. for all e ∊ G’ do 

14.        if e is contained in at least Q triangles then 

15.              remove e from G’ 

16.        end 

17.        for all edges adjacent to e do 

18.              C(e) := C(e) – 1 

19.        end 

20.        if C(e) < Q then 

21.              Q := Q – 1 

22.        end 

23.        output all edges in subgraphs of G 

24.     end 

25.     return 

26. end 

        

In Algorithm 1, the triangle set T of G is initialized as an 
empty set before the process begins. The first loop processing 
from step 2 to step 12 is the same as the previous proposed 
truss decomposition algorithm in [5]. All nodes of G is visited 
once by adopting the standard breadth-first-search algorithm. 

Then, the special edge e’ ∊ E’ is generated for constructing 

triangles in G. So the given bipartite graph G is transformed 

into G’, where G’ = (V1 ⋃ V2, E ⋃ E’). In the next loop 

processing, from step 13 to step 26, all of the edge e ∊ E is 

traversed, but excluding the special edges e’ ∊ E’ because the 

special edge e’ ∊ E’ is used for constructing triangles in the 

given bipartite graph G. The edge e ∊ E are removed from the 

graph G recursively based on the number of triangles which 
containing the edge e. However, the number of triangles in 
which containing the edge e and its adjacency edges decreases. 

In here, a novel definition of edge e ∊ E is proposed. It is the 

number of edges in which adjacent to the edge e, denoted by 
C(e) in the algorithm 1. For example, the triangle constructed 
by the nodes v, vj, vk is deleted if the edge (v, vk) or (v, vj) is 
removed from G. Then, the value of C(e) of edge (v, vk) or (v, 
vj) is C(e) – 1. This process is proposed for preventing the 
drawback of  edges’ multi traversal, and removing the sparse 
edges e from G. The value of threshold Q decreases when the 
value C(e) of any edge e is smaller than the threshold Q. 
Finally, the set of edges that contained in the dense subgraphs 
of G is extracted as the output result.  

V. Experimental Results 
A succession of experiments has been done to observe 

the density and size of the extracted substructures. The results 
verify the effectiveness of the improved algorithm for the 
quasi-k-truss decomposition of bipartite graphs. The 
environment is CPU: Intel core i7 2.3GHz, RAM: 8GB, and 
the version 4.1.2 of C/C++ compiler in Mac OS 10.8.3. 

The dataset is chosen from 20 newsgroups, which were 
referred in [16]. They were a collection of newsgroup 
documents. Each of them is corresponding to a certain topic, 
and represents the relationship between keywords and news 
documents. The bipartite graph G constructed from the dataset 
is characterized by |V(G)| = 444, |E(G)| = 578, and degree(G) 
= 56. 

 

Figure 5. The result by the improved algorithm (#subgraphs) 

 

The Figure 5 shows the number of subgraphs extracted by 
the improved algorithm. The X-axis denotes the size of 
subgraphs, and the Y-axis is the number  of extracted 
subgraphs. Compared to Figure 5, the Figure 6 shows the 
number of subgraphs extracted by the previous algorithm. By 
these results, we conclude the efficiency of our algorithm in 
the view point of the number of extracted substructures. 
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Figure 6. The result by the previous algorithm (#subgraphs) 

 

 

Figure 7. The result by the improved algorithm (density) 

 

The Figure 7 Shows the average of density of extracted 
subgraphs by the improved algorithm. The X-axis is the size of 
extracted subgraphs formed by the node sets V1 and V2, and Y-
axis is its density, i.e., the ratio |E(G)|/(|V1||V2|). On the other 
hand, the previous algorithm extracts almost trivial bipartite 
graph so that |V1| = 1 or |V2| = 1. By this result, out algorithm 
can extracts sufficiently dense substructures from the given 
bipartite graph G. 

VI. Conclusion 
A novel quasi-k-truss decomposition algorithm has been 

proposed for bipartite graphs. This is an improvement of the 
previous version of quasi-k-truss. As the experimental results 
show, the new algorithm works well compared to the previous 
algorithm. The scalability is a future work of the proposed 
algorithm since the number of special edges grows rapidly 
when the input graph is dense. For this problem, a method for 
pruning of special edges is needed. More experiments will be 
done with more data sets to evaluate the effectiveness and 
efficiency of the proposed algorithm. 
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