

86

Proc. of the Intl. Conf. on Advances In Computer and Electronics Technology- ACET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-024-8 doi: 10.15224/ 978-1-63248-024-8-19

An Extension of Community Extraction Algorithm on

Bipartite Graph

Yanting Li, Koji Maeda, Tetsuji Kuboyama, Hiroshi Sakamoto

Abstract—We introduce a truss decomposition algorithm for

bipartite graphs. A subgraph G of a graph is called k-truss if

there are at least k-2 triangles containing any edge e of G. By a

standard breadth-first-search algorithm, we can compute the

truss decomposition for large graphs. To extract a dense

substructure that represents community in graph G, this method

avoids the intractable problem of clique detection. The truss

decomposition is not, however, applicable to the bipartite graphs

due to its definition. For this problem, we have proposed quasi-

truss decomposition introducing an additional set of edges. For

this decomposition, there is another problem such that dense

subgraphs G1 and G2 are connected with a small number of edges.

The previous algorithm detects the sparse structure H = G1 ⋃ G2

as quasi-truss due to the definition. In this paper, we improve the

algorithm to extract denser substructures by removing such

sparse edges with a top-down strategy. The extended algorithm

has been implemented, and compared its performance with the

previous algorithm for bipartite graphs obtained from real data.

Keywords—k-truss, community extraction, bipartite graph.

I. Introduction
Given a graph G, the communities are interpreted as

cohesive subgraphs in G. The problem of identifying
communities has attracted much attention recently due to the
increased interest in studying various graphs with complicated
structures [1]. It helps in analyzing graph structures, and
mining useful information from graph data. Numerous
techniques for data mining have been proposed for
approaching graph analysis problems from different aspects
[2]. Therefore, we focus on this framework of community
discovery, and apply it to an attractive domain of data, such as
social networks.

In this research, we consider the problem of extracting
communities in a bipartite graph using the notion of truss,
which is a substructure in a graph. Originally, the truss is
defined as a cohesive subgraph composed of triangles, i.e.,
cliques with three nodes, in a graph [3], and the truss
decomposition algorithm for extracting dense subgraphs
hierarchically based on truss structure is proposed in [4].

Yanting Li, Koji Maeda, and Hiroshi Sakamoto

Kyushu Institute of Technology, Japan

Tetsuji Kuboyama

Gakushuin University, Japan

A bipartite graph is a type of the common structure for
modeling relations between two classes of objects, and is
found in many real-world relations such as user-item relations
in an online shop. Therefore, it is an important task to extract
communities from a bipartite graph by applying an efficient
algorithm such as the truss decomposition. However, the truss
decomposition technique is not applicable to bipartite graphs
since no triangle is contained in it. To expand the notion of
truss to the class of bipartite graph, we introduce a new notion
called quasi-truss. We also develop an efficient algorithm for
bipartite graph decomposition, and examine the scalability of
it with real-world bipartite data.

We introduce an extended truss decomposition for bipartite
graphs. A subgraph of a graph G is called k-truss if any edge e
of G is in at least k - 2 triangles. By a standard breadth-first-
search algorithm, we can compute the truss decomposition for
large graphs. When extracting a dense substructure community,
this method avoids the intractable problem of clique detection.
This simplicity is an advantage. The truss decomposition is not,
however, applicable to the bipartite graphs due to the
definition. For this problem, we have proposed quasi-truss
decomposition of a bipartite graph H, i.e., H is transformed
into H’ by adding the special edge (x, y) if there are two edges
(x, z) and (y, z) in H, and the quasi-truss of H is obtained by
removing all special edges from the truss of H’. For this
decomposition, consider the case that two dense subgraphs G1
and G2 are connected with a small number of edges. Then, the

previous algorithm in [5] detects the structure H = G1 ⋃ G2 as

quasi-truss due to the definition. In this paper, we improve the
algorithm to extract more dense substructures by removing
such sparse edges between dense graphs. We implemented the
extended algorithm and compare its performance with the
previous algorithm for bipartite graphs defined on real data.

II. Related Works
An interesting substructure in a graph is called community

which is a subgraph densely connected by edges among nodes.
According to the definition by Flake et al. [6], a community is
a set of nodes in which each member has at least as many
edges connecting to members as it does to non-members. This
definition is unambiguous, and for any set of nodes, we can
determine whether it is a community or not.

In [7,8], a community of a graph G = (V, E) is defined as a

subgraph containing at least one clique, i.e., a subset V’ ⊆ V

such that the subgraph in G induced by V’ is a complete graph.
Generally, the clique is extracted as a set of the nodes with
high degrees. For this reason, the nodes with relatively lower

87

Proc. of the Intl. Conf. on Advances In Computer and Electronics Technology- ACET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-024-8 doi: 10.15224/ 978-1-63248-024-8-19

degrees are liable to be ignored, and not so much effective for
uniformly sparse graphs. Moreover, the problem of finding
maximal cliques is computationally hard. Thus, in the last
decade, several efficient algorithms to find quasi-cliques,
instead of extract cliques, have been proposed [9].

The quasi-clique is a relaxation notion of clique, for
example, on the density [10] or the degree [11, 12]. However,
the problem of finding these quasi-cliques remains to be NP-
hard. Moreover, it may be difficult to capture the entire
structure of communities in a graph since these subgraphs may
substantially overlap, or completely be separated.

To address these difficulties, a definition of dense
subgraph called k-core has been proposed. It is defined as a
maximal connected subgraph among all of its nodes with
higher degree than k in G. Besides, the truss decomposition
algorithm has been proposed: given a graph G, the k-truss of G
is the largest subgraph of G in which any edge is contained in
at least k - 2 triangles within the subgraph [13]. The problem
of truss decomposition is to find all k-trusses where k ≥ 3.

While the problem of finding the densest subgraph is NP-
hard, there is an efficient polynomial algorithm for the k-truss
detection. From the point of view of the clique approximation,
the k-truss is better than k-core [14,15], which is a well-known
subgraph for community discovery. For the problem of finding
all k-trusses in a graph, i.e., truss decomposition problem, an
efficient in-memory algorithm [3] and two I/O-efficient
algorithms have been presented to handle massive networks
[4], and the efficiency of truss decomposition has been proved.

Many interesting relations are represented by bipartite
graphs, such as user-item relations in an online shop, the user-
music/movie relations of an online entertainment system.
Recently, we have proposed an algorithm for enumerating
triangles in a bipartite graph [5]. In this paper, we improved it,
and propose a new quasi-truss decomposition algorithm. Our
algorithm is based on the following fundamental algorithms
for bipartite graphs.

One is for testing bipartiteness to examine whether a graph
is a bipartite or not [16]. The main idea of testing bipartiteness
algorithm is to assign every node with a certain color in order
to distinguish the color of its parent in a preorder traverse.
This provides a two-colored spanning tree which consists of
the edges containing nodes to their parents. However, some
nodes may not be colored properly. In the case of depth-first-
search, one of the two endpoints of every non-tree edge is
another endpoint’s ancestor. These pairs of nodes have
different colors when non-tree edges are found. An odd-cycle
can be formed by the path from ancestor to descendant within
the incorrect colored edges together. With such an evidence,
the graph is not bipartite. Every edge should be colored
properly if the algorithm is terminated without detecting any
odd-cycle of this type. It returns a bipartite graph with colors.

Another one is the matching algorithm on bipartite graph.
Matching in a graph G = (V, E) is a subset of E such that no
two edges share a common node. A node is matched if it is an
endpoint of one of the edges in the matching. Matching
problem is easier to solve by using bipartite graph than non-
bipartite graph in many cases, such as the popular Hopcroft-

Karp algorithm [17] for maximum cardinality matching which
working correctly only with bipartite graphs.

III. Basic Notion
A clique consisting of three nodes is called a triangle. A

truss is defined based on triangles embedded in a graph. For a
threshold k, the k-truss is a type of cohesive subgraphs that
represents the largest subgraph of G such that every edge is
contained in at least k - 2 triangles within the subgraph. This

value is called the support of edge e = (u, v) ∊ E(G), denoted

by sup(e, G). When G is unnecessary to indicate, we denote
just sup(e). The support of e in G is the number of triangles in
G that contain e. Thus, the k-truss for k ≥ 2, denoted Tk, is a

subgraph defined by the condition ∀e ∊ E(Tk) [sup(e, Tk) ≥ k -

2].

The task of truss decomposition is to find all k-truss in G
for k ≥ 2 where k is the bounded by the degree of G. The truss

number of an edge e in G is defined as max{k : e ∊ E(Tk)},

denoted by Ψ(e). From the definition of truss number, another

definition k-class that denoted by Фk, defined as {e : e ∊ E(G),

Ψ (e) = k}. Relatively, the k-truss is the edge induced
subgraph from the set E(Tk) = ⋃i≥kФi.

The Figure 1 Illustrates the k-truss decomposition of a
given graph G. The edges are contained in different number of

triangles in G. The 2-class Ф2 is the set of edges e with sup(e)

= 0. The 3-class Ф3 is the set of edges with sup(e) = 1, i.e., for

e = (x, y), there exist at least one node z such that (x, z), (y, z) ∊
E(G). The 4-class is analogous.

Figure 1. Illustration of the 2-, 3-, 4-, and 5-truss decomposition

From the k-classes, k-trusses of G can be obtained as
follow. The 2-truss T2 is simply G itself. The 3-truss T3 is the

subgraph formed by the edge set Ф2 ⋃ Ф3 ⋃ Ф4, etc. It can

be verified that each edge of Tk is contained in at least k - 2
triangles where 2 ≤ k ≤ 5. The k-trusses represent the
hierarchical structures of G at different level of granularity.

88

Proc. of the Intl. Conf. on Advances In Computer and Electronics Technology- ACET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-024-8 doi: 10.15224/ 978-1-63248-024-8-19

IV. Quasi-truss Decomposition
and Its Improvement

A. Quasi-truss for Bipartite Graph
Given a bipartite graph G = (V1 ⋃ V2, E), there is no edge

connecting all nodes in V1 or V2. Obviously, a bipartite graph
contains no triangles due to its characteristic. Thus, we extend
the notion of k-truss to bipartite graph, named quasi-k-truss.
Based on the definition of k-truss, we introduce a special edge

e’ ∊ E’ to the bipartite graph G as follow. For any two distinct

nodes u and v in the same node set, if at least one common
neighbor of them in another node set, define the special edge

(u, v) ∊ E’. The bipartite graph G is transformed to G’ = (V1 ⋃
V2, E ⋃ E’) such that E’ = {(u, v) | u, v ∊ V1 or u, v ∊ V2, and a

node in V(G) is adjacent to u, v}. The substructures of G can
be obtained by recursively removing the edges in which are
contained in the triangles.

Conceptually, the notion of quasi-k-truss is similar to k-
truss. To compute the quasi-k-truss, initially, every node in
both V1 and V2 of the given bipartite graph G will be visited.
The set of special edges is determined by checking whether
any two adjacent nodes in the same node set connected by a
special edge share at least one common neighbor node in
another node set. The structure of the given bipartite graph and
its special edges is illustrated in Figure 2.

Figure 2. The generation of special edge in bipartite graph

As shown in Figure 2, there are two types of edges in the
bipartite graph: the original edges in E are depicted by solid
lines, and the special edges in E’ exists between two nodes v1
and v2 in V1, provided that v1 and v2 share a common neighbor

node vh ∊ V2. Then, an imaginary triangle is formed by three

edges {(v1, v2), (v2, vh), (v1, vh)}. By this preprocessing, a
bipartite graph G is transformed into G’. The quasi-k-truss of
G is a subset of G(E) obtained by removing all special edges
from the k-truss of G’.

The truss-like components in each hierarchy is illustrated
by Figure 3. According to the definition of quasi-k-truss, the

truss-like components consists of edges e ∊ E. The special

edges e’ ∊ E’ is excluded. Initially, the 2-truss is the bipartite

graph itself. The 3-truss contains all edges anchored in no less
than a triangle. The 4-truss contains all edges anchored in no
less than two triangles. It contains edges {(v1, h), (v2, h), (v3, h),
(v4, j), (v4, k), (v5, k), (v5, l), (v5, m), (v6, l), (v6, m)}. The 5-
truss contains edges {(v1, h), (v5, k), (v5, l), (v5, m)}. The given
bipartite graph is decomposed hierarchically.

Figure 3. The quasi-k-truss decomposition in bipartite graph, where almost
special edges are omitted due to the complication

B. Improvement
The algorithm for extracting quasi-k-truss have been

proposed in [3]. However, this algorithm contains a drawback
when the input bipartite graph is dense. Consider the situation
that two complete bipartite graphs G1 and G2 that they are
connected by an edge, shown as Figure 4.

Figure 4. An example of quasi-k-truss detected by the improved algorithm

The previous algorithm extracts the structure E(G1) ⋃
E(G2) ⋃ {e} because e is detected as an edge of higher quasi-k-

truss than other edge in G1 or G2. The reason is that e is most
frequent edge appearing in triangles. To avoid such case, we
develop an improved algorithm described in Algorithm 1. In
this algorithm, we propose a method for removing those
undesired edge e based on the frequency of triangles contain e.

89

Proc. of the Intl. Conf. on Advances In Computer and Electronics Technology- ACET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-024-8 doi: 10.15224/ 978-1-63248-024-8-19

Algorithm 1: Improved truss-decomposition algorithm

・input graph G is transformed into G’

・T: the set of all triangles in G’

・q: the queue for graph traverse

・e: an edge in E = E(G)

・e’: a special edge in E’ = E(G’)

・Q: maximum number of triangles with a single edge in E’

・C(e): number of adjacency edges of an edge e

Input: G = (V1 ⋃ V2, E)

Output: all detected subgraphs

1. T := ∅

2. for all v ∊ (V1 ⋃ V2) do

3. q.enqueue(v)

4. while not q.empty() do

5. v := q.dequeue()

6. if (v1, vj) , (v1, vk) ∊ E(G) then

7. e’ := (vj, vk) generated

8. T = T ⋃ {t}, t={v1, vj, vk}

9. end

10. transform G into G’ = (V1 ⋃ V2, E ⋃ E’)

11. end

12. end

13. for all e ∊ G’ do

14. if e is contained in at least Q triangles then

15. remove e from G’

16. end

17. for all edges adjacent to e do

18. C(e) := C(e) – 1

19. end

20. if C(e) < Q then

21. Q := Q – 1

22. end

23. output all edges in subgraphs of G

24. end

25. return

26. end

In Algorithm 1, the triangle set T of G is initialized as an
empty set before the process begins. The first loop processing
from step 2 to step 12 is the same as the previous proposed
truss decomposition algorithm in [5]. All nodes of G is visited
once by adopting the standard breadth-first-search algorithm.

Then, the special edge e’ ∊ E’ is generated for constructing

triangles in G. So the given bipartite graph G is transformed

into G’, where G’ = (V1 ⋃ V2, E ⋃ E’). In the next loop

processing, from step 13 to step 26, all of the edge e ∊ E is

traversed, but excluding the special edges e’ ∊ E’ because the

special edge e’ ∊ E’ is used for constructing triangles in the

given bipartite graph G. The edge e ∊ E are removed from the

graph G recursively based on the number of triangles which
containing the edge e. However, the number of triangles in
which containing the edge e and its adjacency edges decreases.

In here, a novel definition of edge e ∊ E is proposed. It is the

number of edges in which adjacent to the edge e, denoted by
C(e) in the algorithm 1. For example, the triangle constructed
by the nodes v, vj, vk is deleted if the edge (v, vk) or (v, vj) is
removed from G. Then, the value of C(e) of edge (v, vk) or (v,
vj) is C(e) – 1. This process is proposed for preventing the
drawback of edges’ multi traversal, and removing the sparse
edges e from G. The value of threshold Q decreases when the
value C(e) of any edge e is smaller than the threshold Q.
Finally, the set of edges that contained in the dense subgraphs
of G is extracted as the output result.

V. Experimental Results
A succession of experiments has been done to observe

the density and size of the extracted substructures. The results
verify the effectiveness of the improved algorithm for the
quasi-k-truss decomposition of bipartite graphs. The
environment is CPU: Intel core i7 2.3GHz, RAM: 8GB, and
the version 4.1.2 of C/C++ compiler in Mac OS 10.8.3.

The dataset is chosen from 20 newsgroups, which were
referred in [16]. They were a collection of newsgroup
documents. Each of them is corresponding to a certain topic,
and represents the relationship between keywords and news
documents. The bipartite graph G constructed from the dataset
is characterized by |V(G)| = 444, |E(G)| = 578, and degree(G)
= 56.

Figure 5. The result by the improved algorithm (#subgraphs)

The Figure 5 shows the number of subgraphs extracted by
the improved algorithm. The X-axis denotes the size of
subgraphs, and the Y-axis is the number of extracted
subgraphs. Compared to Figure 5, the Figure 6 shows the
number of subgraphs extracted by the previous algorithm. By
these results, we conclude the efficiency of our algorithm in
the view point of the number of extracted substructures.

90

Proc. of the Intl. Conf. on Advances In Computer and Electronics Technology- ACET 2014.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-024-8 doi: 10.15224/ 978-1-63248-024-8-19

Figure 6. The result by the previous algorithm (#subgraphs)

Figure 7. The result by the improved algorithm (density)

The Figure 7 Shows the average of density of extracted
subgraphs by the improved algorithm. The X-axis is the size of
extracted subgraphs formed by the node sets V1 and V2, and Y-
axis is its density, i.e., the ratio |E(G)|/(|V1||V2|). On the other
hand, the previous algorithm extracts almost trivial bipartite
graph so that |V1| = 1 or |V2| = 1. By this result, out algorithm
can extracts sufficiently dense substructures from the given
bipartite graph G.

VI. Conclusion
A novel quasi-k-truss decomposition algorithm has been

proposed for bipartite graphs. This is an improvement of the
previous version of quasi-k-truss. As the experimental results
show, the new algorithm works well compared to the previous
algorithm. The scalability is a future work of the proposed
algorithm since the number of special edges grows rapidly
when the input graph is dense. For this problem, a method for
pruning of special edges is needed. More experiments will be
done with more data sets to evaluate the effectiveness and
efficiency of the proposed algorithm.

Acknowledges

This work was supported in part by JSPS KAKENHI Grant

Numbers 26280088 and 26280090.

References

[1] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, & D. Parisi, Defining

and identifying communities in networks. Proceedings of the National
Academy of Sciences of the United States of America, 101(9), 2658-
2663, 2000.

[2] G.W. Flake, S. Lawrence, C.L. Giles & F.M. Coetzee, Self-organization
and identification of web communities. Computer, 35(3), 66-70, 2002.

[3] J. Cohen, “Truss: cohesive subgraphs for social network analysis,” 2008.

[4] J. Wang, J. Cheng, Truss Decomposition in Massive Network,
VLDB2012, 2012, pp.812–823.

[5] Y. Li, T. Kuboyama, H. Sakamoto, Mining Twitter Data: Discover
Quasi-truss from Bipartite Graph, in Magnetism, KES-IDT, 2103, pp.
287–295.

[6] G. W. Flake, S. Lawrence, C. L. Giles, Efficient Identification of Web
Community, KDD2000, 2000, pp.150-160.

[7] J. M. Kleinberg, Authoritative Sources in a Hyperlinked Environment,
SODA1998, 1998, pp.668-677.

[8] R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Extracting Large-
scale Knowledge bases from the Web, VLDB1999, 1999, pp. 639–650.

[9] J. Cheng, Y. Ke, A.W.C. Fu, J.X. Yu & L. Zhu, Finding maximal
cliques in massive networks by h*-graph. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data (pp.
447-458). ACM.

[10] J. Abello, M.G. Resende & S. Sudarsky, Massive quasi-clique detection.
In LATIN 2002: Theoretical Informatics (pp. 598-612). Springer Berlin
Heidelberg.

[11] H. Matsuda, T. Ishihara, A. Hashimoto, Classifying Molecular
Sequences using Lingkage Graph with their Pairwise Similarities, Theor.
Compt. Sci., 1999, 201(2)305-325.

[12] J. Pei, D. Jiang, A. Zhang, On Mining Cross-graph Quasi-cliques,
SIGKDD2005, 2005.

[13] J. Cohen, Graph Twiddling in a Mapreduce World, Computing in
Science and Engineering, 2009, 11(4)29-41.

[14] V. Batagelj, M. Zaversnik, An O(n) Algorithm for Cores Decomposition
of Networks, advances in data analysis and classification, 2011, Vol. 5,
No. 2, pp. 129-145.

[15] S. B. Seidman, Network Structure and Minimum Degree, Social
Networks, 1983, 5(3)269-287.

[16] N. Alon, M. Krivelevich, Testing k-colorability, SIAM J. Discrete Math.,
2002, 15(2)211-227.

[17] J. E. Hopcroft and R. M. Karp, An n5/2 Algorithm for Maximum
Matchings in Bipartite Graphs, SIAM J. Comput., 1973, 2(4)225-231.

[18] J. Chen, Y. Saad, Dense Subgraph Extraction with Application to
Community Detection, Knowledge and Data Engineering, IEEE Trans
2012, Vol. 24, Issue: 7.

[19] J. Cheng, Y. Ke, A. W. C. Fu, J. X. Yu, L. Zhu, Finding Maximal
Cliques in Massive Networks, ACM Transactions on Database Systems,
2011, 36(4) Article, No. 21.

[20] L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, Comparing Community
Structure Identification, Journal of Statistical Mechanics: Theory and
Experiment, 2005, Vol. 2005, p. p09008.

