
 

20 

Proc. of the Intl. Conf. on Advances In Computer and Electronics Technology- ACET 2014. 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-024-8 doi: 10.15224/ 978-1-63248-024-8-05 

 

Infection dectection in complex networks with 

community structures 
 Yi Yu, Gaoxi Xiao 

 
Abstract—Infection detection is of significant importance as it 

allows early reaction and proper measures for infection control. 

Existing studies typically propose algorithms for finding the best 

locations for a given number of monitors in order to achieve most 

effective early detection. In this work, we examine the influences 

of community structures on infection detection. Specifically, a 

few different cases are tested where monitors are deployed in two 

community networks, namely community random network and 

community scale-free network, respectively. By comparing the 

average/maximum infection sizes in different networks with 

different community strengths, we show that the existence of 

community structures, in most cases, helps significantly reduce 

the infection size. We also test the case where each monitor has a 

certain probability failing to detect the infection. Simulation 

results show that in the community networks, similar to that in 

random networks without community structures, even a low 

probability of monitor failure may significantly increase the 

infection size. 
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I.  Introduction 
Complex networks have been studied for more than a 

decade. A lot of the real-life systems, including the Internet 
autonomous systems [1], computer networks [2], World Wide 
Web [3], human sexual contacts [4] etc., can be modelled as 
complex networks. Various network models [5, 6, 7] have 
been proposed to catch the statistical characters of the 
networks and extensive results have shown that network 
structures can significantly influence the dynamics and 
properties of the systems. A typical example is the scale-free 
network of which the nodal degrees follow a power-law 
distribution [7]. It is shown that having such a structure can 
strongly influence the dynamics of the systems, e.g., leading to 
zero epidemic threshold in infinite networks [8] yet allowing 
effective immunization [9, 10, 11], etc. 

One topic with very limited existing results, however, is 
the detection of infection spreading in complex networks. 
Typically it is assumed that a certain number of monitors are 
deployed in the network and the infection, once reaches a node 
installed with a monitor, will trigger an alarm and the 
consequent measures for infection control. Existing results 
have focused on finding the best locations for a given number 
of monitors in order to minimize the average/maximum 
infection size, respectively [12, 13].  
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We consider a different problem in this paper, namely the 
effects of community structures on the efficiency of infection 
detection in complex networks. Community structures have 
attracted extensive research interests as such structures widely 
exist in most real-life systems [14]. Existing studies however 
have been mainly focusing on detecting [15, 16, 17] and 
modelling [18, 19] community structures, while rather limited 
work has been done for understanding why community 
structures exist so widely and how such structures influence 
the properties of the complex systems. 

In this paper, we study the effects of community structures 
on the efficiency of infection detection by conducting 
extensive simulations on two community network models: 
random network with community structure [18] and scale-free 
network with community structure [19]. We apply the monitor 
deployment algorithms in [12, 13] for minimizing the 
maximum/average infection size and compare the infection 
size of networks with different numbers of communities. We 
show that the existence of community structures generally 
speaking helps significantly reduce the infection size. Further, 
to examine how community structures influence the reliability 
of the detection scheme, we test the case where each monitor 
has a certain probability of failing to detect the infection. 
Simulation results show that even a low probability of monitor 
failure may significantly increase the infection size.  

The rest of the paper is organized as follows. The 
community network models, epidemic models and infection 
detection models will be briefly described in Section 2. 
Numerical simulations for testing maximum/average infection 
sizes in different community networks will be reported in 
Section 3. In Section 4, we test on the reliability of the 
detection schemes in community networks. Finally, Section 5 
concludes the paper. 

II. Models and algorithms 

A. Random networks with community 
structures 
We adopt the algorithm in [18] to generate random 

networks with community structures. The basic idea of the 
algorithm is to initially assign the nodes into different 
communities and connect the nodes within the same 
community with a much higher probability than that between 
nodes belonging to different communities. Assume that each 
pair of nodes in the same community are connected at 
probability of p and each pair of nodes in different 
communities are connected at probability of q, and denote 

/p q  . For a network with N nodes and M communities 



 

21 

Proc. of the Intl. Conf. on Advances In Computer and Electronics Technology- ACET 2014. 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-024-8 doi: 10.15224/ 978-1-63248-024-8-05 

 

with  
in nodes in the i-th community, the total number of links 

can be calculated as:  
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For a network with equal community size the expected 
number of intra-community links is: 
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      The expected number of inter-community link is: 
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 We shall use these two equations to control the number of 
links in the rest part of the paper. 

B. Scale-free networks with community 
structures 
Scale-free networks have a power-law degree distribution 

where 

( ) ~p k k  . 

In most real-life cases,  is between 2 and 3. The traditional 

BA model generates a scale-free network with 3  [7].  

In this paper, we will use the algorithm proposed in [19] to 
generate scale-free networks with adjustable community 
structures. Initially, we build a network with M communities 

with 
0m nodes in each community. Within each community, 

the nodes are connected into an complete graph. For each pair 
of communities, a random link is built to connect them. For 
each node, the number of inter-community links and intra-
community links are recorded separately. At each time step of 
the evolving process, a single node is added into the network. 
It randomly chooses a community to join and brings m intra-
community links. It connects to a node of its own community 
with a probability proportional to that node’s intra-community 
nodal degree. Meanwhile, it has a probability of   to create n 

inter-community links. It connects to a node of a different 
community with a probability proportional to that node’s inter-
community nodal degree. The process repeats until the 
network grows to the expected size. It can be calculated that 
the network created has a degree distribution of:  
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C. Infection and infection detection 
models 
Follow the work in [12],  we adopt the SI model [20] in 

our simulations. Specifically, we assume that the infection 
starts from a single node. At each time step, each susceptible 
node adjacent to any infected node has a certain probability p 
of getting infected. An infected node is never recovered. SI 

model closely resembles the early stage of an outbreak of 
infection. In the rest of the paper, following the assumption in 
[12], we consider 1p  which indicates an extreme 

(benchmark) case of strong infection. 

For detecting the infection, a given number of monitors are 
deployed in the network. We assume that the monitors are able 
to detect the infection and proper measures can be taken to 
stop the infection immediately. Among all the different cases 
with different infection sources, the worst one leading to the 
biggest infection size when the infection is detected generates 
the so-called maximum infection size; while the average 
infection size of all the different cases is termed the average 
infection size..  

D. Monitor deployment algorithms 
The algorithms in [12] and [13] respectively try to find the 

best locations for a given number of monitors in order to 
achieve the minimum maximum/average infection size, and 
both of them demonstrate good performances. Specifically, 
[12] developed a heuristic algorithm called MMI to minimize 
the maximum infection size. The basic idea of MMI algorithm 
is to start with a random deployment of monitors and then 
iteratively improve the detection performance until a local 
minimum is reached. It is shown that by repeating the 
algorithm with a large enough times, each time with a 
different initial deployment, satisfactory performance can be 
achieved. In [13], a greedy algorithm approach is developed 
for minimizing the average infection size. This algorithm was 
conveniently termed as MAI algorithm in [12]. In this paper,  
both MMI and MAI algorithms will be adopted for 
performance evaluation.  

III. Detection of strong infection 
in community networks 

In this section, we will apply the two existing monitor 
placement algorithms in the community networks to see how 
the maximum/average infection sizes are influenced by the 
community structures. 

We carry out simulations on both random and scale-free 
networks with community structures. For the random network 
models, we generate them with 1 community (i.e., without 
community structure), 5 communities, and 10 communities, 
respectively. Each of these networks has 500 nodes and 2500 

edges. Let / ,100,200p q    in the three networks 

respectively, which makes  the  inter-community links count 
for about 5% of all the network links in the latter two 
community networks. For the scale-free network model, we 
also generate them with 1 community, 5 communities, 10 
communities respectively. Each of them has 1000 nodes, 3000 
edges.Let 0.02   in the latter two community networks. For 

each random network, we let each of the 500 nodes serve as 
the infection source for 10 times and average the results of 
these 5000 realizations. For each scale-free network, we let 
each of the 1000 nodes serve as the infection source for 10 
times and average the results of these 10000 realizations. In 
both network models, the SI model is adopted and the 
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spreading probability is 1p  . For deploying monitors 

minimizing the maximum infection size, we run the MMI 
algorithm proposed in [12] for 5000 and 1000 times 
respectively and select the best results of these realizations. 
For deploying monitors minimizing the average infection size, 
we adopt the MAI algorithm [13]. 

Figure 1 shows both the maximum and average infection 
size in random networks and scale-free networks with 
community structures. In random networks, both the 
maximum and average infection size  are significantly reduced 
when there exist community structures. In scale-free networks 
with community structures, however, only the maximum 
infection size is reduced while the average infect size is not 
significantly changed. In fact, having more communities leads 
to slightly bigger average infection size. This is not hard to 
understand: in scale-free networks, the inter-community links 
are more likely to be connected to the nodes with higher inter-
community degree. Once such nodes are infected, the infection 
easily spread to all the communities. 

IV. Reliability of infection 
detection schemes 

In this section, we further consider the case where each 
monitor has a certain chance failing to detect the infection. 
This is a quite common situation in real-world cases and we 
want to examine the tolerance of system when community 
structures are introduced.  

Following the argument in [12], we only consider the 
average infection size as there always exists a certain chance, 
though typically extremely small, that all the monitors fail to 
trigger an alarm when getting infected and consequently, the 
infection takes over the whole network. To calculate average 
infection size, for each network, we use the MAI algorithm to 
find the monitor locations; then we let each node be the 
infection source and run the simulation for 10 times. During 
the process, each monitor has a probability   of failing to 

detect the infection. The average of these 10 realizations is the 
expected infection size for infection sourced from this node. 
Let all nodes serve as the infection source and the average of 
them is the average infection size of the network.  

 
(a)                                                                                        (b) 

   
(c)                                                                                        (d) 

Figure 1. (a) Maximum infection size versus the number of monitors deployed in random networks with community structures; (b) Average infection size 
versus the number of monitors deployed in random networks with community structures; (c) Maximum infection size versus the number of monitors 

deployed in scale-free networks with community structures; and (d) Average infection size versus the number of monitors deployed in scale-free networks 

with community structures. 
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Figure 2 shows the relationship between detection failure 
probability and the average infection size in random networks 
with 1, 5, 10 communities and scale-free networks with 1, 5, 
10 communities, respectively. Similar to that reported in [12] 
for non-community random networks, we can observe that in 
all the cases, the infection size increases dramatically with the 
detection failure probability. 

V. Conclusion 
In this paper, we examined how community structures 

influence infection detection in complex networks. Extensive 
simulation results show that the existence of community 
structures in most case helps significantly reduce the 
maximum/average infection size in random networks. In scale-
free networks, however, community structures help reduce the 
maximum infection size but not the average infection size. 
When every node has a certain chance of failing to report the 
infection spreading, the existence of community structures 
does not help significantly improve the reliability of detection 
schemes in both networks. The infection size increases 
dramatically with the detection failure probability.  
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Figure 2 Average infection size versus the detection failure probability in (a) random network with 1 community; (b) random network with 5 communities; (c) 

random network with 10 communities; (d) scale-free network with 1 community; (e) scale-free network with 5 communities and (f) scale-free network with 

10 communities. 
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