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Abstract— The response of FRP (Fiber Reinforced Polymer) 

reinforced concrete beam has been the topic of previous research, 

because of use of modern FRP composite materials in the 

building industry as concrete reinforcement. The behavior of 

FRP reinforced member is different from the one reinforced with 

regular steel reinforcement. This difference is caused by order of 

magnitude different moduli of elasticity of the respective 

materials and results in the fact that conventional design methods 

used for years in the field of reinforced concrete structures give 

poor results if used with FRP reinforced structural members. 

Results of conventional methods tend to overestimate load 

capacity of the member and underestimate deformations – both 

resulting in unsafe predictions. This paper points to formulating 

easy to use and comprehensible method of predicting moment 

capacity of FRP reinforced concrete beams subjected to bending 

loading, utilizing the bond-slip relation of the FRP reinforcement 

and validation of the proposed method via set of experiments. 
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I.  Introduction 
Since the proliferation of FRP (Fiber Reinforced Polymer) 

composite materials as concrete reinforcement is mostly 
restricted by their still high price, there are also several 
technical aspects restricting their wider use. Besides their 
fragility, unclear long-term durability, partial flammability in 
case of carbon fiber RP, by nature orthotropic mechanical 
behavior and physical properties (namely by order of 
magnitude different coefficient of thermal expansion 
respective to the fiber orientation), one of the factors is also 
their difficulty to describe behavior of FRP reinforced 
structural members in calculation. This paper focuses on 
formulation of easy to use and comprehensible method of 
evaluation and prediction of the moment capacity of FRP 
reinforced concrete beams. 

In available literature, the formulae recommended for load 
bearing capacity prediction and design are based on empirical 
approach, mostly resulting from statistically processed 
experimental data [1,2]. Our work, on the contrary, derives 
theoretical model of behavior of FRP reinforced concrete 
section under flexural load and uses this model to formulate 
very easy to use design formula. 
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II. Analytical model 

A. Moment-curvature relation 
In the case of continuous centerline of beam, including 

continuity of derivatives (smooth curve without breaking 
points), the internal forces can be put into relation with the 
geometry of the centerline curve using relations of theory of 
elasticity of continuous beams.  

For the simplest case of bending (assuming only linear 
elastic state of the material), the formula governing the 
relation between acting bending moment M and curvature κ of 
the centerline can be written in the form of differential 
equation of bending 

 MEIEIw”, 

where I is the moment of area of the cross section relative to 
the axis of acting moment, E is the Young’s modulus and w” 
denotes the second derivative of transversal coordinate, 
perpendicular to the acting moment direction. 

The curvature κ can be defined as reciprocal value to the 
radius of curvature ρ of the beam center line, i.e. κ = 1/ρ. The 
relation of curvature and the centerline w(x) is defined by the 
formula 

 κw”/(1+w’
2
)

3/2
. 

In engineering applications, where the slope of the 
centerline can be assumed small, we can approximate w’ ≈ 0 
and as result the curvature from the previous equation will be 
equal to the second derivative alone, i.e. κ ≈ w”. The moment-
curvature relation can be used to describe elasto-plastic 
behavior of the cross section, in terms of defining the point of 
elastic limit and plastic limit of moment capacity in case of 
ductile material being used as reinforcement. 

B. Reduction of tensile capacity of FRP 
reinforcement due to member 
curvature 
In the case of FRP reinforcement one particular problem 

appears. It is not present in ductile material (as steel) and is 
specific problem of brittle FRP material. The bar failure is 
driven by fiber rupture, in which case the load carried by 
single fiber has to be distributed among other fibers 
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throughout the reinforcement cross section. In case this 
increment causes rupture of other fiber, chain reaction of fiber 
rupture will occur and the bar will fail in brittle manner. As a 
result, a bar subjected to tensile loading as in reinforced 
concrete tensile zone, may fail even before reaching its 
ultimate stress in axial tension simply by introducing slight 
bending of the bar, resulting in additional tensile stressing of 
outlaying fibers of the FRP bar. The load carrying capacity of 
the FRP has to be reduced with increasing curvature of the 
FRP reinforced member. As was mentioned before, this 
reduction of load carrying capacity is strictly specific to FRP 
and similar materials, ductile materials are able to redistribute 
the load throughout reinforcement cross section utilizing the 
yielding and plastic capacity of the material. 

Figure 1.  Curvature of elastic section. 

The curvature κel, based on the basic assumptions of theory 
of elasticity as sectional planarity, can be calculated, assuming 
the beam is subjected to pure bending, simply using the strain 
in compressive (εc) fiber and reinforcement (εr) of the cross 
section of effective height d, see Fig. 1: 

 κel = (c + r)/d. 

The reinforcement centerline obviously needs to copy the 
centerline of the entire member, as it is embedded in it. The 
curvature κ of the structural member thus induces additional 
bending moment Mr in the FRP reinforcement bar with 
magnitude of Mr = ErIrκ, where Er is the modulus of elasticity 
of the FRP reinforcement and Ir is the moment of area of the 
reinforcement bar with diameter Ø and Wr is its sectional 
modulus. The additional stress in reinforcement σr.add induced 
by the constrained rebar curvature is 

 r.add = Mr/Wr = Mr/(2Ir/Ø). 

By substituting the additional bending moment in rebar 
into (4) and simplifying, we get the relation for additional 
stress in the rebar σr.add as function of structural member 
curvature κ: 

 r.add = ErØκ/2. 

Thus, the total stress in the most stressed fiber of the FRP 
reinforcement bar can take the form of failure criteria for 
reinforcement: 

 r.totrr.add = r + ErØκ/2 ≤ fr. 

where σr is the stress in reinforcement calculated by 
conventional means of section evaluation and fr is the 
reinforcement tensile strength. 

It should be noted, that for small curvatures the reduction 
is virtually insignificant, in the order of less than 1 % of load 
bearing capacity, but with increase of reinforcement ratio and 
deflection (and thus curvature) at peak loading the reduction 
can bring down the load bearing capacity of the reinforced 
section by significant 15 % or more. 

C. Moment-rotation relation 
The previous paragraph, describing moment-curvature 

relation, assumed that the centerline of the flexed beam is 
continuous including the derivatives, i.e. the centerline curve 
is smooth. The concept of plastic hinge however implies the 
formation of discontinuity in the centerline derivative, forming 
a breaking point in the centerline curve. As long as the 
curvature at such point is infinite (radius of curvature is equal 
to zero), the moment-curvature concept is not of use in this 
case. The rigid body rotation model, providing relation 
between bending moment and the rotation angle of the two 
rigid parts is used instead. It is to be noted that the product of 
moment and rotation angle of the two rigid parts can be 
interpreted as energy dissipated in the plastic hinge. 

The rigid-body rotation model is especially suited for 
applications, where the strain is concentrated into limited area, 
typical for plastic hinges. In the theory of reinforced concrete 
beams such plastic hinge is formed by reinforcement yielding. 
The assumption is that the reinforcement yields in ideal elasto-
plastic manner, i.e. no hardening of the reinforcement is taken 
into account. By such assumptions, the rotation capacity of 
plastic hinge in steel reinforced concrete beam is limited by 
the ultimate compressive strain of concrete εcu. As the strain in 
the plasticized reinforcement increases, so does the strain in 
compressive area, ultimately leading to concrete crushing 
failure of the compressive zone. 

Formulating the constitutive relation of flexural behavior 
of reinforced section has one more advantage, as 
commercially available software usually includes user-
definable plastic hinge model, and thus such relation can be 
adopted for use in various environments without requiring 
separate single purpose software.  

Figure 2.  Rigid body rotation angle definition. 
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It is possible to formulate moment-rotation relation 
utilizing the reinforcement slippage model, as described in 
[5,6]. When crack developed in reinforced beam and 
reinforcement slipping due to axial force is assumed, the point 
on the reinforcement and point in the concrete matrix, which 
were coincident before the loading are now slipped apart by 
distance s(F). The rotation angle υ between the two crack 
faces can now be written as (see Fig. 2): 

 υ ≈ tan υ  = s(F)/(d – x). 

This assumption should be valid for any crack surface, 
with exception of the crack localized at peak bending moment, 
as reinforcement slippage in such case occurs on both crack 
surfaces. The total rotation angle 2υ should be considered on 
such cracks. In cracks in the area of continuously increasing 
bending moment, only one crack surface (the one facing the 
moment maximum) is subjected to reinforcement slippage. 

D. Reinforcement slippage 
The bond-slip relation applied to the face of reinforcement 

in concrete can be arbitrary; in this case a bond-slip relation 
formulated by Eligehausen et al. [3] and modified by Cosenza 
et al.[4] for use with FRP bars will be used. This relation 
allows for solving analytically for slip, normal stress and bond 
stress along the reinforcement bar under tension together with 
exact solution of the stress development length. 

The differential equation governing the bond problem of 
rebar is derived from equilibrium of rebar and consideration of 
linear elastic behavior of rebar. In this section, the ξ coordinate 
will be used to describe the longitudinal dimension along rebar 
of diameter Ø and modulus of elasticity Er, s will be the 
slippage (i.e. the distance between a point on rebar and in 
matrix, that were coincident before load was applied) and τ is 
the bond contact shear stress. The equation governing the 
bond-slip relation is formulated as: 

 d
2
s/dξ

2
 – 4τ(ξ)/(ErØ) = 0. 

For the relation governing the bond-slip stress, the model 
introduced in [4] specifically for FRP bars is used. This model 
puts in relation bond stress and slip between rebar and 
concrete, thus introducing the relation in form τ = τ(s). Such 
constitutive law is given piecewise by 

 τ(s) = τ1(s/s1)
α
; 0 ≤ s < s1 

 τ(s) = τ1 – τ1p(s/s1 – 1); s1 ≤ s < s3 

 τ(s) = τ3;  s ≥ s3, 

where τ1 is peak bond stress, τ3 is residual bond stress, s1 is 
peak bond stress slippage, s3 is threshold slippage for residual 
bond stress, α is parameter describing ascending branch of the 
relation and p is parameter describing the softening branch, 
see Fig. 3. The values for these parameters given by [4] for 
FRP bars are in Table 1: 

TABLE I.  FRP BOND-SLIP MODEL PARAMETERS 

Outer surface 

characteristic 

Bond-slip model parameters 

α p s1 [mm] τ1[mm] τ3[mm] 

Smooth 0.145 1.87 0.26 1.19 0.99 

Ribbed 0.283 14.88 1.23 11.61 7.79 

Grain covered 0.067 3.11 0.13 12.05 3.17 

 

Figure 3.  Bond-slip stress (left) and its simplification (right). 

The exponential model described by equation (9) proved to 
be difficult to solve analytically, so simplification was applied, 
transforming the exponential model to linear one, by 
introducing one additional parameter τ0. The simplification 
was performed in such manner, that the maximum bond stress 
τ1 is preserved and the potential energy of the deformation is 
retained as well, i.e. the area under the curve is kept equal. 
Equation (9) will be changed to form 

 τ(s) = (τ1 – τ0)(s/s1) + τ0; 0 ≤ s < s1 

where τ0 = τ1(1–α)/(1+α). For detailed derivation see [5]. 

In order to find function describing the slippage in relation 
to longitudinal coordinate along rebar s(ξ), we need to solve 
the differential equation (8) with different formulas for τ(s(ξ)) 
in the respective intervals. The solution exists, but its 
complexity is beyond extent of this paper. Important is, that 
such solution gives relation between slippage and position 
along the reinforcement bar s(ξ), which using the bond-slip 
constitutive law can be transformed to bond stress distribution 
τ(ξ) along the bar. Such relation allows solving for equilibrium 
of total bond force with tensile load of the reinforcement and 
calculation of development length λ as bi-linear function of 
axial force in reinforcement. Finally, it is possible to formulate 
relation between axial force Fr in the reinforcing bar and 
slippage at the face of the crack, s(Fr) using bi-quadratic 
simplified relation with five parameters. It is possible to 
tabulate these five parameters for various rebar diameters and 
FRP materials or include such relation in to engineering 
software. 

E. Moment-curvature and moment-
rotation compatibility problem 
The moment-curvature relation is based on theory of 

elasticity and assumes elastic behavior of beam under flexion 
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and moment-rotation describes the behavior of inelastic hinge 
formed upon reaching of given limit load. The compatibility 
issue occurs in case we need to superpose the two states, i.e. to 
model crack opening in already deflected beam. It is not 
possible to simply combine the two models, simply because of 
the dimension of the variables – the rotation is denominated in 
angular units, i.e. is dimensionless and curvature is defined as 
reciprocal of radius of osculating circle or second derivative of 
centerline deflection curve, with dimension of reciprocal 
length. 

The curvature can be calculated utilizing sectional 
dimensions and strain in compressive and tensile fiber, as seen 
in equation (3). The rotation after section cracking can be 
calculated using the reinforcement slippage and neutral axis 
location as seen in equation (7). 

In order to be able to combine the two variables we will 
introduce the quantity with dimension of reciprocal length, 
replacing the rotation. As this quantity has the same dimension 
as curvature, we will call this quantity pseudo-curvature and 
denote κps. The smooth curved centerline should be replaced 
with polygonal chain of lines of finite length sm (crack 
distance) and angle at each apex υ. We can now define a circle 
of radius r, coincident with every single apex of the polygonal 
chain, see Fig. 4. The reciprocal of radius r is the pseudo-
curvature κps of the polygonal chain and it value is κps = υ/sm.  

Figure 4.  Polygonal chain of rigid bodies, pseudo-curvature definition. 

The pseudo-curvature κps resulting from previous 
assumption of rigid body rotation can now be combined with 
curvature κel, obtained from elastic calculation and their sum 
κtot can be used as the curvature in the reinforcement failure 
criteria (6). 

III. Calculation of the moment 
capacity 

As has been stated before, the notorious design formula of 
evaluating the moment capacity of the reinforced concrete 
beam, presented in Eurocode 2 is unsafe to use with FRP 
reinforcement. The proposed reduction coefficient obviously 
has to be related to the reinforcement ratio, as for slightly 
reinforced sections the reduction in moment capacity induced 
by member curvature is negligible and for sections with high 
reinforcement ration, even at the threshold of concrete 

crushing failure, the reduction may reach levels higher than 15 
%. Such high reduction is caused by very high curvatures the 
FRP reinforced members display at failure point, as the 
Young’s modulus of FRP reinforcement is by order of 
magnitude lower than the one of steel, resulting in much lower 
stiffness of the structural member (the fact which in 
engineering practice leads to Serviceability Limit State based 
design of FRP reinforced members).  

The proposed formula for reduction coefficient Cred was 
based upon investigation made on theoretical models and 
verified using series of experiments, using cross sections with 
various reinforcement ratios ρ, ranging from 0.1 % up to 1.5 
%, where the failure is driven by concrete crushing. 
Reinforcement ratio ρ is calculated as the ratio of sectional 
area of reinforcement Ar relative to effective sectional area 
b×d, where b is the width of compressive zone and d is the 
distance of reinforcement form the compressive fiber of the 
section. As the reduction was found to be strongly non-linear, 
a function with more than one parameter was required to 
approximate it. Logarithmic expression with two parameters 
was found to fit the results well. The formula was proposed in 
the following form: 

 Cred = a(ln ρ + b), 

where a and b are arbitrary constants and for the time have 
been found to be a = 0.075 and b = 2 and the value of Cred 
represents the relative amount of moment capacity that is lost 
due to member curvature. For reinforcement ratios ρ lower 
than 0.15 %, the reduction should be considered zero. It 
should be a topic of further research whether the reduction 
formula would give better results, if formulated in form of 
other function, for example in the form of bi-parametric square 
root function. The resulting evaluation algorithm based on 
Eurocode 2 takes the form of: 

 x = (Arfr)(0.8bαfc), 

 MR = (1 – Cred)Arfr(d – 0.4x), 

where MR is the moment capacity, x is the neutral axis 
coordinate relative to compressive fiber of the cross section, Ar 
is sectional reinforcement area, fr is tensile strength of 
reinforcement, b is width of the compressive area, α is 
coefficient (usually 0.85 or 1.0) and fc is concrete compressive 
strength. 

IV. Experimental results and 
conclusion 

The theoretical models, described in previous paragraphs, 
were compared to experimental results on medium scale test 
specimens. The experimental program was conducted in the 
laboratories of the Experimental Centre of the Faculty of Civil 
Engineering of the Czech Technical University in Prague 
during the spring of 2011, as part of bachelor thesis of Filip 
Vogel [7,8]. Experimental setup was slightly unorthodox due 
to the fact that the primary purpose of the experiment was to 
investigate the moment redistribution ability of the FRP 
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reinforced beams and the moment capacity measurement (for 
this paper) was just a by-product of the investigation. The 
experiments were conducted on FRP reinforced concrete 
continuous beams with identical outer dimensions (180×130 
mm cross section, 4.0 m length) differed in their reinforcement 
ratio. The reinforcement in all cases was symmetrical for 
upper and lower surface of the beam, as positive and negative 
bending moments were anticipated on the continuous beam. 
The main three specimens used GFRP reinforcement of 
different diameters: 2Ø6, 2Ø8 and 2Ø10 respectively as upper 
and lower reinforcement. 

The length of the test specimens (4.0 m) was limited by the 
dimensions of the laboratory equipment and the layout of the 
test had to be chosen in order to make best use possible of the 
4.0 m long specimen. The requirement was for the test to 
represent at least once statically indeterminate structure, in 
order to be able to measure hypothetical moment redistribution 
upon reaching desired plastic hinge. Acting force F and all 
support reactions A, B, C were measured, together with 
deflections. The experiment layout is in Fig. 5.  

Figure 5.  Experiment layout. 

All the test specimens underwent destructive test with the 
results of the measured ultimate moment capacities and their 
comparison to predicted values presented in comprehensible 
form in Table 2. 

TABLE II.  COMPARISON OF RESULTS 

 
 GFRP reinforcement layout 

2Ø4 2Ø6 2Ø8 2Ø10 2Ø12 2Ø14 

ρ [%] 0.12 0.28 0.50 0.78 1.13 1.55 

MR (EC2) [kNm] 2.55 5.63 9.76 14.77 20.45 26.56 

Cred [%] 0.0 5.4 9.7 13.1 15.9 18.3 

MR (red.) [kNm] 2.55 5.33 8.81 12.83 17.20 21.71 

M measured N/A 5.35 9.23 12.27 N/A N/A 

 

As can be seen from the table, the reduced moment 
capacity results in the line MR (red.) provide much safer 
prediction than conventional design formula in line MR 
(EC2), compared to the actual measured moment capacity M 
measured. Still, the proposed moment capacity reduction 
formula (Eq. 8) is quite simple and comprehensible. 
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