
An Improvement of Requirement-Based Compliance 
Checking Algorithm in Service Workflows 

Wattana Viriyasitavat 
Business Information Technology Division, Department of 

Statistics, Faculty of Commerce and Accountancy, 
Chulalongkorn University, Bangkok, Thailand 

hardgolf@gmail.com 

Andrew Martin 
Department of Computer Science, University of Oxford, 

Oxford, United Kingdom 
andrew.martin@cs.ox.ac.uk

Abstract—This paper presents an improvement of requirement-
oriented compliance checking algorithm to support trust-based 
decision making in service workflow environments. The proposed 
algorithm is based on our previous progressive works on (1) Service 
Workflow Specification language (SWSpec) serving as a formal and 
uniformed representation of requirements, and (2) the algorithm 
based on Constrained Truth Table (CTT), specifically developed for 
compliance checking for the Composite class of SWSpec. However, 
CTT algorithm practically suffers from high complexitywhich is 

, where  is the number of services presented in a 
workflow, and  is the size of a SWSpec formula to be checked. In 
this paper, we improve algorithm CTT by using Exclusive 
Disjunctive Normal Form (EDNF) as a new data structure that 
reduces the time complexity in the average case to . 
Finally, the performance comparison between these two approaches 
is conducted. 

Keywords—Service, Workflow, Compliance Checking 

I. INTRODUCTION 

Service workflowshave received much interest in the past 
decades. Nowadays, they appear in several forms ([1], [2], and 
[3]). For example, within an organization, services are used as 
a building block to streamline and automate business processes 
to improve efficiency and scalability. In decentralized 
collaborative environments such as Grids [4], Virtual 
Organizations (VO), and Cloud Computing, services become a 
fundamental element for collaborations. Despite their wide 
range of applications, services still suffer from the lack of an 
agreed and standard in requirement representation. 

Formal methods provide rich specification languages ([5], 
[6], and [7]), to express such requirements, modeling languages 
to abstract systems to be verified, and algorithms. To achieve 
automatic reasoning that is needed to facilitate scalability, 
dynamicity, and security in large-scale open environments, 
three essential elements are required: (1) a modeling language 
in which workflows can be logically abstracted to represent 
structure of services, tasks, and their relationships, (2) a 
specification language as a formal and uniformed 
representation of requirements, and (3) compliance checking 
algorithms to ascertain that the services satisfy such 
requirements [8]. All of the three elements have been 
comprehensively addressed in our previous work. The 
workflow to be verified is modeled by Service Workflow Net 
(SWN), with the introduction of control connectives for 

structure formulation; the requirements are formally 
represented by SWSpec formulas [9]; and the compliance 
checking algorithm are developed based on CTT [10]. In this 
paper, we improve the algorithm CTT by using EDNF as a new 
data structure that reduces the time complexity from 

 to in the average case. 

The rest of this paper is organized as follows. Section II 
presents our previous work on SWN, SWSpec, and algorithm 
CTT. Section III explains the process of simplifying SWSpec 
formulas, which will be used for EDNF compliance checking 
algorithm. In section IV, algorithm EDNF is presented. Then, 
we conduct the analysis with comparison of performance 
between CTT and EDNF algorithms in Section VI. Section VII 
presents some related works, and thenthe last section concludes 
and discusses potential future research.  

II. BACKGROUND

In this section, the information regarding (1) our workflow 
modeling, SWN, (2) SWSpec formulas, and (3) CTT algorithm 
is described shown in Table I, II, and III, respectively. Please 
refer to [9] and [10] for more information and justifications. 

TABLE I 
SWN DEFINITION 

Def. 1 A Petri Net is a labeled Place/Transition Net, i.e., a 7-tuple 
, where 

1) P is a set of places (representing services), 
2) T is a set of transitions (representing tasks), 
3)  represents directed flows, 
4)  is a function 

containing a workflow structure formula ( ) with either a split or a join 
type. A formula contains three types of connectives ( , , and 

).  
5)  is a labelling function where A is a set of properties, and 

denotes a null value. It is used for labelling a service with attributes 
(properties). 

Service-join (or service composition) is defined as a set of possible services 
that can be activated for a task execution.  
Service-split (or service separation) identified a set of services that can be 
triggered after the execution is done. 

Proc. of the International Conference on Advances in Information Technology – AIT 2012
Edited by Dr. R. K. Singh.
Copyright © 2012 Universal Association of Computer and Electronics Engineers. All rights reserved.
ISBN: 978-981-07-2683-6 doi:10.3850/978-981-07-2683-6 AIT-109

41



Proc. of the International Conference on Advances in Information Technology – AIT 2012

TABLE II 
SWSPEC GRAMMARS 

Def. 2SWSpec grammars presented in Backus–Naur Form (BNF) form below 
Path Formulas  |  |  |  |  |  |  |  |  |  |  |  |  | 
Composite Formulas   |  |  |  |  (Quantifier) 

 |  |  | (Property) 
Direction Formulas   |  |  |  | 

Path operators 
Next  It allows requirements to be specified that along a selected path the immediate connected service must satisfy. 
Future  It allows requirements to be specified that one service (property) must be present along a selected path. 
Global  It allows requirements to be specified that all services (globally) along a path must satisfy. 
Strong Until It allows requirements to be specified that  must hold until . It also demands  to hold in the future. 
Weak Until It is just like the Strong until except  is not required to hold in the future. 

, ,  And, Or, Not These operators are similar to CTL 
For Some Path There must be some paths among a set of connected services through a task . 
For All Path It allows requirements to be specified for all paths through a task . 

Composite operators 
Forward  It addresses the properties of target services in service-split type through a task  indicated by  or . 
Previous  It addresses the properties of target services service-join type through a task  indicated by  or . 
Composite For Some It indicates that at least one services in service-join or service split type through a task  must be satisfied. 
Composite For All It indicates that all services in service-join or service split type through a task  must be satisfied. 
Strong Composite It allows requirements to be specified in service-join or service split type.   
Conjunction It must be preceded by the same Composite quantifier operator through a task  indicated by  or . 
Strong Composite It indicates that in one or both of the properties in service-join or service split type 
Disjunction It must be preceded by the same Composite quantifier operator through a task  indicated by  or  .
Composite Exclusive  It indicates that only one property of services is presented in an execution.  
Disjunction  These services are restricted to a task indicated by  or .
WeakComposite  As weaker than , It is not restricted to be preceded by the same Composite quantifier operator, 
Conjunction for example, . 
WeakComposite  As weaker than , It is not restricted to be preceded by the same Composite quantifier operator, 
Disjunction for example, . 
Null  It represents an empty notion meaning that no property of services is required.
Atomic  This is an extensible elementwhere s, t and o are name, type, and owner. A set of attributes  is used to indicate      

   service properties. 
CompositeNegation It indicates the negation of an expression.  

Direction operators 
Forward  It addresses the properties of target services in service-split type through a task  indicated by  or . 
Previous  It addresses the properties of target services service-join type through a task  indicated by  or . 
HenceforthIt allows requirements to be specified in the forward direction from the preceding to succeeding along a  

workflow path.
Backward  It allows requirements to be specified in the backward direction from a succeeding service to a preceding along  

a workflow path  
, , And, Or, Not They are similar to the definitions in propositional logic.  

Def. 3Satisfiability Relations: Let  be a SWSpec formula and  be an SWN:  
1)  is satisfied, where   is satisfied , 
2) is partially satisfied, where  and ;  
3)  is unsatisfied, where  does not satisfy of . 

Figure 1.  The Clove Tree of a Formula  and its 
Transformation with the Notion of Cloves of 

III. PREPROCESSING SWSPEC FORMULAS

For simplicity, any SWSpec formula is translated into a 
simpler form. It can be pre-processed until the property part of 
a Composite formula includes only and  in order. The 
notions of cloves and clove trees (from [10]) below represent 
the transformed formula (see Figure 1). 

Def. 4 (Clove): Given a Composite formula, a clove is 
defined as a set of atomic propositions linked by  operators, 
or a single atomic proposition if no such operator is involved. 

Def. 5 (Clove Tree): A clove tree is the representation of a 
Composite formula with the quantifier part as a root, the 
second level is  operator, and the leaves are cloves. 

The formula in Figure 1 can be 
interpreted as follows (see algebraic properties in Table IV).  

42



Proc. of the International Conference on Advances in Information Technology – AIT 2012

- Initial form ࣪�୲ሺ�ଵ ِ ሺ�ଶ ٛ ሺ�ଷ ّ �ସሻሻ
- Applying Distributive Property  ؠ ࣪�୲ሺሺ�ଵ ِ �ଶሻ ٛ ሺ�ଵ ِ ሺ�ଷ ّ �ସሻሻ
- Applying ٛ Elimination  ؠ ࣪�୲ሺ�ଵ ِ �ଶሻ�Ƭ�Ǩ ࣪�୲ሺ�ଵ ِ ሺ�ଷ ّ �ସሻሻ�ȁȁǨ ࣪�୲ሺ�ଵ ِ �ଶሻ�Ƭ࣪�୲ሺ�ଵ ِ ሺ�ଷ ّ �ସሻሻ
- Applying Distributive Propertyؠ ࣪�୲ሺ�ଵ ِ �ଶሻ�Ƭ�Ǩ ࣪�୲ሺሺ�ଵ ِ �ଷሻ ّ ሺ�ଵ ِ �ସሻሻ�ȁȁ�Ǩ ࣪�୲ሺ�ଵ ِ �ଶሻ�Ƭ࣪�୲ሺሺ�ଵ ِ �ଷሻ ّ ሺ�ଵ ِ �ସሻሻ

This transformation makes the algorithm simpler because 
the absence of ٛ allows us to circumvent the check between �� and ٛ that can be done indirectly by ِ and ّ. 

TABLE III 
REDUCTION RULES AND ALGORITHM CTTSAT

Reduction Rules 
Suppose that Ԅ and ɘ are two sub-SWSpec formulas 

Rule 1: For Ԅ�����ɘ, Ԅ and ɘ must both be true or false. 
Rule 2: For Ԅ�����ɘ, Ԅ and ɘ cannot both be true. 
Rule 3: The results of the evaluation cannot be false.

Algorithm CTT 
1:Function������ሺ����ǡ�ሻ
         // CTT ൌa constrained truth table object 
         // CTT.R ൌ a set of rows 
         // Vൌ a set of workflow variables 
2:      Begin
3:          For each �୧ א ���Ǥ�
4:            For each variable � א � in that row 
5: If�୲ is presented 
6: If for all � א � marked with 1 ٧ any clove  
7: �୧ ൌ �a���ϐ�edǢ
8: End if
9:               End if
10:             If�୲ is presented, 
11:                If some � א � marked with 1 ٧ any clove  
12:                   �୧ ൌ �a���ϐ�edǢ. 
13:                End if
14:             End if
15:          End for
16:       End for
17:       If for all �୧ ൌ �a���ϐ�ed
18:          Return�a���ϐ�ed; 
19:       Else If some �୧ ൌ �a���ϐ�ed
20:          Return�a���a�����a���ϐ�ed; 
21:       Else
22:          Returnun�a���ϐ�ed; 
23:       End if
24:    End Function

TABLE IV 
PERFORMANCE COMPARISON

Name  Initial Form Transformed Form 
Distributive �ଵ ِ ሺ�ଶ ٛ �ଷሻ ሺ�ଵ ِ �ଶሻٛ ሺ�ଵ ِ �ଷሻ
Property  ܼଵ ِ ሺܼଶ ّ ܼଷሻ ሺܼଵ ِ ܼଶሻ ّ ሺܼଵ ِ ܼଷሻٛ Elimination �୲ሺ�ଵ ٛ �ଶሻ ሺ�୲�ଵƬǨ�୲�ଶሻ�ȁȁ�ሺǨ �୲�ଵƬ�୲�ଶሻ
  οԢ�୲ሺ�ଵ ٛ �ଶሻ ሺ�୲�ଵƬ�Ǩ �୲�ଶሻȁȁሺǨ �୲�ଵƬ�୲�ଶሻ

(see the complete properties in [10]) 

IV. EDNF 

Normal form is an alternative choice in representing 
Boolean functions in a more concise. A formula with the same 
number of variables is much more compact comparing to CTT. 
For this reason, effective compliance checking can be 

developed. Terms in EDNF are all variables that are connected 
by ����connectives, and ��� connectives are used to connect 
between terms. If all terms are true, the result is satisfied. If 
some are true, the result is partially satisfied; otherwise, it is 
unsatisfied. 

To circumvent the check between �� and ٛas mentioned 
earlier, any workflow formula is presented by the combination 
of ��� and ���, while �� can be transformed as follows:  ������ ൌ ������������ሺ�������ሻ
Def. 6 (EDNF): An SWN formula is EDNF if it is an 
exclusive disjunction of terms where each term is a 
conjunction of literals. 

A. Algorithm EDNFSAT 

Assume that all SWN formulas are presented in the form of 
EDNF. The complexity of compliance checking depends on (1) 
the number of the occurrence of workflow variables (services), 
(2) the number of connectives, and (3) reasoning algorithms. 
One of the most efficient algorithms employs a binary tree data 
structure to represent a workflow formula. Leaf nodes are 
workflow variables while the upper nodes represent workflow 
connectives. The graphical explanation of the complexity 
calculation is illustrated in Figure 2. The operations of this 
algorithm can be understood by the following steps (the pseudo 
code for ���	�a� is presented in Table V). 

1) Each leaf node is marked with satisfied, unsatisfied, or 
unknownQ, if it satisfies, does not satisfies, or partly 
satisfies with any clove in a clove tree. For instance, if a 
node contains a property �ଶ  and there is a clove ��୧ ൌሺ�ଵ ِ �ଶሻ which is part of a clove tree of a Composite 
formula ࣪�୲ሺ�ଵ ِ �ଶሻ, we mark the node with unknownQ

where the subscripted � ൌ ሼሺ�ଶǡ ��୧ሻሽ . Note that the 
unknown marking occurs only when ِ is presented in a 
clove. The set �  indicates a set of partly satisfied 
properties. For example, � ൌ ሼሺ�ଵǡ ��ଵሻǡ ሺ�ଶǡ ��ଶሻǡ ǥ ሽ. 

2) For each upper ��� node traversing up towards the top ��� node in an SWN tree formula, if �୲ is presented in 
the clove tree, 

a) if at least one lower node is marked with 
satisfied, we mark the upper ���  node with 
satisfied, 

b) if one node is unknownQ and another is marked 
with unsatisfied, we mark the upper ��� node 
with unknownQ, 

c) if two lower nodes with unknownQ marking are 
combined which results in satisfying any clove, 
we mark the upper ��� node with satisfied. If 
not, it is marked with unknownQ; 

d) otherwise, we mark the upper ���  node with 
unsatisfied, and repeat until traversing to the top ��� node. 

e) Go to step 4. 
3) For each upper ��� node traversing up towards the 

top ���  node in an SWN tree formula, if �୲  is 
presented in the clove tree, 
a) We mark the node with satisfied, if the lower 

nodes are the combination of (1) both marked 
with satisfied,, or (2) satisfied and unknownQ,

43



Proc. of the International Conference on Advances in Information Technology – AIT 2012

TABLE V 
ALGORITHM EDNFSAT

1:Function���	���ሺ����ሻ  // ���� is a EDNF tree representing 
workflow formulas in the form of clove tree 

2:� ൌ a set of properties of unknown status to satisfy any clove; 
3:� ൌ ����Ǥ �   // a set of workflow variables; 
4:� ൌ all presented connectives; 
5:Begin
6:         For each �୧ א �, 
7:               If�୧ ٧ any clove 
8:                   �୧ ൌ �a���ϐ�edǢ
9:               Else if �୧ partly complies with any clove 
10:                 �୧ ൌ un�n��n୕; 
11:             Else��୧ ൌ un����ϐ�ed; 
12: End if 
13:       End for
14:       For each �୧ א � and �୧ ൌ ���  //Assume that �୧ is chosen in order 

from low-to-high layer of the  ����
15:             If�୲ is presented 
16:                    If (�୧Ǥ �e�� ൌ �a���ϐ�ed�����୧Ǥ ����� ൌ �a���ϐ�ed) ��

(�୧Ǥ �e�� ൌ un�n��n୕���(�୧Ǥ ����� ൌ �a���ϐ�ed) ��
(�୧Ǥ �e�� ൌ �a���ϐ�ed����୧Ǥ ����� ൌ un�n��n୕) �୧ ൌ �a���ϐ�ed;   

17:                    Else If (�୧Ǥ �e�� ൌ un�n��n୕����୧Ǥ ����� ൌ un�n��n୕) 
18:                          �୧ ൌ �a���ϐ�ed;   
19:                    Else�୧ ൌ un�a���ϐ�ed; 
20: End if 
21:End if   
22:             If�୧ is ������������
23:                    If�୧ ൌ un�n��n୕
24: �୧ ൌ un�a���ϐ�ed; 
25: End if
26:             End if
27: If�୲ is presented 
28:                  If�୧Ǥ �e�� ൌ �a���ϐ�ed����୧Ǥ ����� ൌ �a���ϐ�ed
29: �୧ ൌ �a���ϐ�ed;   
30: Else If (�୧Ǥ �e�� ൌ un�n��n୕����୧Ǥ ����� ൌ un�n��n୕) 
31: �୧ ൌ �a���ϐ�ed;   
32: Else If (�୧Ǥ �e�� ൌ un�n��n୕���୧Ǥ ����� ൌ un�n��n୕) 
33: �୧ ൌ un�n��n୕; 
34: Else�୧ ൌ un�a���ϐ�ed; 
35: End if 
36: If�୧ is ������������
37: If�୧ ൌ un�n��n୕
38: �୧ ൌ un�a���ϐ�ed; 
39: End if
40:                   End if 
41: End if
42:       End for
43:      For each �୧ א � and �୧ ൌ ���  ////Assume �୧ is chosen in order 

from low-to-high layer of the  ����
44: If�୧Ǥ �e�� ൌ �a���ϐ�ed����୧Ǥ ����� ൌ �a���ϐ�ed
45: �୧ ൌ �a���ϐ�ed;   
46: Else If  (�୧Ǥ �e�� ൌ un�a���ϐ�ed&�୧Ǥ ����� ൌ un�a���ϐ�ed)  
47: �୧ ൌ un�a���ϐ�ed;   
48: Else�୧ ൌ �a���a�����a���ϐ�ed; 
49: End if
50:End for 
51:  End function

b) if both lower nodes with unknownQ status are 
combined to satisfy a clove, we mark the node 
with satisfied, if not, it is marked with unknownQ,

c) if an unsatisfied mark is presented, we 
immediately mark the top ���  node with 
unsatisfied, and go to step 4. 

d) Repeat until traversing to the top ��� node.  

4) If the top ��� node is unknownQ, we remark it with 
unsatisfied. 

5) In an upper node representing ��� connective,  
a) if all lower nodes are marked with satisfied, it is 

also marked with satisfied,  
b) if one of its lower nodes is marked with satisfied 

and another with unsatisfied or partially 
satisfied, it will be marked with partially 
satisfied;  

c) otherwise it is marked with unsatisfied.   
6) Repeat step 5 until reaching the root node where we 

can determine the final result. 

Leaf Nodes

Log(M)

N

XOR Nodes

Root

AND Nodes

Top AND node

Figure. 2. Graphical Representation of Efficiency Complexity Calculation

B. Analysis of EDNFSAT 

Assume again the checking operation between a clove and a 
leaf node occupies one time unit, the best efficiency evaluation 
of this form is �ሺȁ�ȁȁ�ȁȁ�ȁȁ�ȁሻwhere ȁ�ȁ, ȁ�ȁ, ȁ�ȁ, and ȁ�ȁ are 
the number of cloves, clove trees, workflow variable, and 
workflow connectives respectively. In a concise form,ȁ�ȁȁ�ȁ
can be reduced to ȁ�ȁ, representing a size of SWSpec tree, such 
that the time complexity is presented as �ሺȁ�ȁȁ�ȁȁ�ȁሻ. In the 
worst case scenario, the maximum number of occurrence � of 
workflow variables �  can be calculated by the following 
equation. � ൌ ቀnͳቁ ൅ ቀnʹቁ ൅ ൅ڮ ቀnnቁ

According to Taylor’s approximation, ሺͳ ൅ �ሻୟ ൌ ቀaaቁ �ୟ ൅ ቀ aa െ ͳቁ �ୟିଵ ൅ ൅ڮ ቀaͲቁ �଴
If � ൌ ͳ we have ቀaaቁ ൅ ቀ aa െ ͳቁ ൅ ൅ڮ ቀaͲቁ ൌ ʹୟ

such that, � ൌ ቀnͳቁ ൅ ቀnʹቁ ൅ ൅ڮ ቀnnቁ ൌ ʹ୬ െ ͳ
As a result, the computational complexity of this form is �൫ȁ�ȁȁ�ȁʹȁ୚ȁ൯. However, it is important to look at the average 

occurrence of �  that can be computed as the following 
equation.  a�e�a�e ൌ �ሺn ൈ ቀnnቁ ൅ ሺn െ ͳሻ ൈ ቀ nn െ ͳቁ ൅ڮ൅ Ͳ ൈ ቀnͲቁሻ

44



Proc. of the International Conference on Advances in Information Technology – AIT 2012

a�e�a�e ൌ nʹ
Therefore, the average time complexity of ���	�a�  is �ሺȁ�ȁȁ�ȁଶሻ .The performance comparison between ���	���

and ������ is presented in Table VI. 

TABLE VI 
PERFORMANCE COMPARISON

Models   Checking Time Average 
Constrained Truth Table �ሺȁ�ȁȁ�ȁʹȁ୚ȁሻ �ሺȁ�ȁȁ�ȁʹȁ୚ȁሻ
EDNF   �ሺȁ�ȁȁ�ȁʹȁ୚ȁሻ �ሺȁ�ȁȁ�ȁଶሻ

V. PERFORMANCE EVALUATION

To confirm the applicability, we have developed a 
prototype to validate our framework. All functions are written 
in MATLAB to demonstrate the proof of concept and 
performance comparison between two approaches. The system 
runs on a Windows 7, Intel® Core™ i5-2435M CPU @ 2.40 
GHz, 4 GB RAM, 64-bit Operating System.We design the 
experiment to evaluate time performance when 10, 50, and 100 
services are involved. The result in Figure 3(a) shows that the 
performance between algorithm ���	��� and ������ in the 
worst case scenario is similar. However, ���	���runs faster 
in the average case (see Figure 3(b) andFigure 3(c) and (d) for 
the comparison in bar graph). This corresponds to the 
theoretical evaluation in Table VI. 

 (a)  (b) 

(c)  (d) 

Figure. 3.Performance Evaluation between ܶܣܵܶܶܥ and ܶܣܵܨܰܦܧ
VI. RELATED WORKS

After Model checking is first introduced [11], it has been 
extended to cover wider domains beyond the specific systems 
modeled by Finite State Machine. It has spread across many 
areas ranging from verification between business processes 
and contacts [12], policy-based compliance checking for trust 
[13], logic-based verification [14] to hardware and software 
component testing at very low level. In our essence, we intend 
to apply the concept of model checking for compliance 
checking in the service workflow domain and requirements 
specification. 

VII. CONCLUSION

This paper presents algorithm ���	���  for compliance 
checking between SWSpec formulas and service workflow. It 
improves the existing algorithm ������ that specifically deals 
with Composite class of SWSpec. We conduct the 
experimentto compare between these two approaches. The 
primary advantage of this algorithm is that in average case, 
time complexity for checking operation is reduced into 
polynomial. In practice, the checking process can be locally 
computed; each involved service is only to verify if its own 
requirements. Furthermore, since SWSpec formulas are 
independent from each other, using parallel computing will 
significantly improve the overall performance.For future work, 
we plan to develop the tracer to indicate the conflict points, if 
any, in both SWSpec and SWN, and to provide the counter 
example of this conflict. 

REFERENCES

[1] L. Xu. Enterprise Systems: State-of-the-Art and Future Trends, IEEE 
Transactions on Industrial Informatics. vol.7, no.4, pp.630-640, 2011. 

[2] W. Viriyasitavat, and A. Martin, A Survey of Trust in Workflows and 
Relevant Contexts, In Communications Surveys Tutorials‚ IEEE, vol. 
pp, no. 99, pp. 1 −30, 2011, DOI (10.1109/SURV.2011.072811.00081). 

[3] W. Viriyasitavat, and A. Martin, Formal Trust Specification in Service 
Workflows, In Embedded and Ubiquitous Computing (EUC)‚ 2010 
IEEE/IFIP 8th  International Conference on, pp. 703 −710, 2010. 

[4] T. Fei, Z. Dongming, H. Yefa,  and Z. Zude. Resource Service 
Composition and Its Optimal-Selection Based on Particle Swarm 
Optimization in Manufacturing Grid System, IEEE Transactions on 
Industrial Informatics. vol.4, no.4, pp.315-327 2008. 

[5] W. Viriyasitavat, Modeling Delegation in Requirements-Driven Trust 
Framework, In IEEE Congress on Services- I, pp. 522-529, 2009. 

[6] W. Viriyasitavat, and A. Martin, Formalizing Trust Requirements and 
Specification in Service  Workflow Environment, In Runtong Zhang‚ 
Jos Cordeiro‚ Xuewei Li‚ Zhenji Zhang and Juliang Zhang, editors, 
ICEIS, vol. 3, pp. 196−206. SciTePress. 2011. 

[7] W. Viriyasitavat, and A. Martin, In the Relation of Workflow and Trust 
Characteristics‚ and Requirements in Service Workflows, In Abd 
Manaf‚ Azizah‚ Akram Zeki‚ Mazdak Zamani‚ Suriayati Chuprat and 
Eyas El−Qawasmeh, editors, Informatics Engineering and Information 
Science, vol. 251 of Communications in Computer and Information 
Science, pp. 492−506, Springer Berlin Heidelberg. 2011. 

[8] E.M. Clarke, B.H. Schlingloff, Model Checking, Chapter 21 in 
Handbook of Automated Reasoning, Elsevier Science Publishers, 2000. 

[9] W. Viriyasitavat‚ A. Martin, and L. Xu, SWSpec: The Requirements 
Specification Language in Service Workflow Environments, In 
Industrial Informatics‚ IEEE Transactions on. vol. PP, no. 99, pp. 1. 
2012, DOI (10.1109/TII.2011.2182519). 

[10] L. D. Xu‚ W. Viriyasitavat‚ P. Ruchikachorn, and A. Martin, Using 
Propositional Logic for Requirements Verification of Service Workflow, 
In Industrial Informatics‚ IEEE Transactions on. vol. PP, no. 99, pp 1, 
2012, DOI (10.1109/TII.2012.2187908) 

[11] E. M. Clarke, E. A. Emerson, Synthesis  of synchronization skeletons for 
branching time temporal logic, in ‘Pro. Workshop on Logic of 
Programs’, Vol. 131 of LNCS, Springer, Yorktown Heights, NY, 1981. 

[12] G. Governatori, Z. Milosevic, S. Sadiq, Compliance checking between 
business processes and business contracts. In the 10th Intl. Enterprise 
Distributed Object Computing Conf (EDOC 2006). IEEE Press, pp. 221-
232, 2006. 

[13] M. Blaze M, J. Feigenbaum, A. D. Keromytis, KeyNote: Trust 
Management for Public-Key Infrastructures, in Security Protocols Intl. 
Workshop, Cambridge England, 1998. 

[14] S. Kerrigan, K.H. Law, Logic-based RegulationCompliance-
Assistance.” The 9th Int’l Conf. on ArtificialIntelligence and Law, 
Scotland, UK, pp. 126-135, 2003. 

45


