

170

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-98

Pong Game as an Embedded System
 Sadiye Nergis Tural-Polat

Abstract— In this study, a Pong game running on an FPGA

development and education board using VHDL hardware

description language is synthesized. To this end, an original pong

game code that works solely on the FPGA board is designed. One

important aspect of this design is that the code does not use any

SRAM modules for storage. Though Altera DE0 development

and education board is used for the implementation, thanks to

the usage of only the standard VHDL functions, it can run on any

other FPGA boards.

Keywords— pong game, game code in VHDL, embedded

systems.

I. Introduction
It is well known that FPGA technology provides a suitable

framework for designing and implementing complex systems
in a relatively short time. It is also a very good medium for
real-time image processing applications.

Pong is one of the earliest arcade video games; it is a
tennis sports game featuring simple two-dimensional graphics.
Pong was one of the first video games to reach mainstream
popularity. The aim is to defeat an opponent in a simulated
table-tennis game by earning a higher score. The game was
originally manufactured by Atari Incorporated (Atari), who
released it in 1972. Allan Alcorn created Pong as a training
exercise assigned to him [1].

Pong quickly became a success and is the first
commercially successful arcade video game machine, which
helped to establish the video game industry along with the first
home console, the Magnavox Odyssey. The company released
several sequels that built upon the original's gameplay by
adding new features. The game has been remade on numerous
home and portable platforms following its release [2].

In this paper a fully-embedded Pong game code that runs
on an FPGA development board is designed. All parts of the
game code are written in VHDL and synthesized for the
dedicated FPGA chip on the DE0 board using Altera Quartus
II software. The Modelsim program is used for the
simulations.

The paper is organized as follows: The second chapter
outlines the main Pong game functions. The VHDL code that
achieves the desired functions is given in chapter III and the
results are summarized with the conclusion in chapter IV.

Sadiye Nergis Tural-Polat

Yildiz Technical University

Turkey

II. The Game of Pong
Pong is a two-dimensional sports game that simulates table

tennis. The player controls an in-game paddle by moving it
vertically across the left side of the screen, and can compete
against either a computer-controlled opponent or another
player controlling a second paddle on the opposing side.
Players use the paddles to hit a ball back and forth. The aim is
for each player to reach eleven points before the opponent;
points are earned when one fails to return the ball to the other
(Fig. 1) [1][2].

Figure 1. The original Pong game display. The players move the paddles up

and down to hit the ball, the score is kept by the numbers (0 and 1) at the top
of the screen [1].

III. Pong Game Code in VHDL
We synthesized a one player version of the pong game

code in VHDL. In our version, the player moves a paddle left
and right near the bottom of the screen to hit a moving ball
and the ball bounces back from the left and right edges of the
screen. There are a total of 16 bricks arranged at equidistance
from one another near the top of the screen. The objective of
the game is to hit the bricks with the ball without dropping the
ball to the bottom edge. The brick hit by the ball disappears
from the screen. The game is lost if the ball falls at the bottom
edge of the screen (Fig. 2).

The designed VHDL code that realizes the desired pong
game functions consists of three main parts. The first part
generates the necessary clock signals for the game from the
on-board 50 MHz clock signal of DE0 Board [3]. The second
part constructs the VGA image compatible to VGA Standards
for the game display and the third part produces and controls
the main Pong Game Functions (Fig. 3).

http://en.wikipedia.org/wiki/Pong#cite_note-1
http://en.wikipedia.org/wiki/Pong#cite_note-1

171

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-98

Figure 2. The main pong display screen

Figure 3. Main block diagram of the VHDL Pong Code

A. System Clock and Game Code Clock
As stated above, the DE0 board has 50 MHz on-board

clock. To be able to construct VGA image, we need to have a
25MHz VGA synchronization clock. What is more, to be able
to obtain animated image sequences for game play, it is
necessary to move the objects in the frame at an observable
speed to human eye. We choose the game clock to be 60Hz for
this design.

B. VGA Image Construction and
Synchronization
VGA (Video Graphics Array) video consists of sequential

image frames moving in time. Each frame consists of
vertically arranged rows of horizontal pixels. Every image
frame is constructed by scanning the pixels from the top left
row to the right until the end of line, then repeating the process
for the next line until the end of the frame [4].

Standard VGA image has 640x480 pixel resolution and
60Hz refresh rate. These pixels are in the visible range, several
more pixels are used for synchronization purposes; therefore
the actual pixel size is 800x525. Hence the 25MHz pixel clock
is obtained as

800 525 60 25 VGAf x x MHz
 (1)

Figure 3 shows horizontal synchronization timing
specification and number of pixels used for horizontal and

vertical synchronization are given in Table 1. The proper
synchronization signals are obtained by using two counters for
horizontal and vertical pixel positions.

 DE0 Board has 4-bit DAC for its VGA output RGB (Red,
Green, and Blue) signals, therefore R, G and B signals are
constructed as 4-bit signals in the VHDL code.

Figure 4. Horizontal timing specification of VGA image [7]

TABLE I. HORIZONTAL AND VERTICAL SYNCH PIXEL SIZES

Synch Signals
pixels

Horizontal Vertical

Synch 96 2

Back Porch 48 33

Front Porch 16 10

Display 640 480

Total 800 525

There is a pixel generation block in the VGA Sync block.
The pixel generation block produce the 3-bit RGB signal
which depends on the control signals from the main game
code and the pixel x and y coordinates for each pixel in the
VGA frame. For 640-by-480 VGA resolution, there are about
310k pixels on a screen. This translates to 930k memory bits
for a RGB color display. To reduce the memory requirement,
one alternative is to use a tile-mapped scheme. In this scheme,
a collection of bits are grouped to form a tile and each tile is
treated as a display unit. For the pong game, the video display
is very simple and contains only a few objects. Similar to the
tile-mapped scheme, instead of wasting memory to store a
mostly blank screen, we can generate these objects using
simple object generation circuits for the paddle, the ball and
the bricks. Then we can determine if the current pixel is within
the defined object boundaries and choose the RGB values (ie.
the color of the current pixel) accordingly (Fig. 5).

The object generating code keeps the current location of
the object (for the still objects such as bricks the current
location is the same at all times but for the moving objects
such as the ball the location changes between the image
frames), compares it with the current pixel location and if the
pixel location falls within the object location, the object is
selected by object_on signal and the appropriate RGB color is
assigned to the pixel through the rgb mux.

The rectangular objects are defined by their boundary
coordinates on the screen. Direct object boundary checking for
the nonrectangular objects is very difficult [5] and is not
preferred in this design. Instead, we use a bitmap to specify
the circular ball object and generate the ball_on and ball_rgb
signals according to the bitmap stored in an array in the code
(Fig. 6).

172

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-98

Figure 5. Object-mapped scheme

Figure 6. The circular ball object bitmap

C. Illusion of Animation
When an object changes its location gradually in each

frame, it creates the illusion of motion and becomes animated.
To achieve this, we use registers to store the boundaries of an
object and update its value in each VGA frame. In the pong
game, the paddle is controlled by two pushbuttons and can
move to the left and right, and the ball can move and bounce
in all directions. If the ball hits one of the boundaries of a
brick, the brick should disappear in the next frame and the
background color should be displayed in its place.

The move of the paddle is controlled by the key 0 (right)
and key 1 (left) of the DE0 board. So a small Finite State
Machine checks if the buttons pressed and if there is available
space, moves the paddle to the right or left (changing only two
boundaries of the paddle since it cannot move up or down)
accordingly.

The move of the ball is a bit more complex. The four
boundaries of the ball should be changed at each frame to
achieve ball animation and also should be checked for
collisions to the screen edges, bricks or the paddle.

D. Main Game Code
The main Finite State Machine (FSM) of the program

consists of twelve states (Reset, Start, Key0, Key1,
Bottom_edge, Left_edge, Right_edge, Paddle, Brick,
No_change, Win, Loose) and 18 state transitions. State
diagram of the main FSM is given in Fig. 7.

Bottom
edge

Left edge

Right edge

Paddle
Brick

No Change

Start

Key0
Key1

Reset

Win

Loose

Figure 7. Main FSM State Diagram

Reset state is the initial state, the initial values of all the
registers and object boundaries are set in this state. The ball is
generated at the top center of the screen just below the lower
line of the bricks and starts its downward motion. The paddle
is also at the bottom center of the screen. The next state is the
Start.

At the Start state the code checks if any of the keys on the
DE0 board are pressed by the user and checks the movement
of the ball and the state transitions are done accordingly. Key
0 controls the right move of the paddle (so if key 0 is pressed,
the next state becomes Key0), key 1 controls the left move of
the paddle (Key1 state). If none of the keys are pressed, (or
after the appropriate paddle motion) the next state is
Bottom_edge. When the appropriate conditions are met
(explained below) in every other state or when the reset switch
is pressed (Key2), the program returns to the start state.

At the Key0 state the code checks if there is enough space
to move the paddle to the right and moves the paddle by
changing the boundaries 10 pixels to the right. The next state
is the Bottom_edge.

At the Key1 state the code checks if there is enough space
to move the paddle to the left and moves the paddle by
changing the boundaries 10 pixels to the left. The next state is
the Bottom_edge.

At the Bottom_edge state, the code checks if the bottom
boundary of the ball touches the bottom edge of the screen
which means the game is over. The next state becomes the
Loose state. If not, the code checks if the ball reached at the

173

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-98

left edge of the screen and the next state becomes the
Left_edge.

The Left_edge state checks if the ball reaches at the left
edge of the screen. Then the ball should bounce back
vertically at the same direction with the symmetrical angle
with which it collides to the edge. The new boundaries of the
ball are set accordingly. Then the code checks if the ball hit
the right edge of the screen, therefore the next state becomes
the Right_edge.

Similarly, the Right_edge state examines whether the ball
reaches at the right edge of the screen. Then the ball should
bounce back vertically at the same direction with the
symmetrical angle with which it collides to the edge. The new
boundaries of the ball are set accordingly. The next state is the
Paddle.

The Paddle state checks if the ball touches to the paddle.
Similar to the edge states, the ball should bounce back
(horizontally) at the same direction with the symmetrical angle
with which it collides to the paddle. The new boundaries of the
ball are set accordingly. Then the code checks if the ball hit
one of the bricks so the next state is the Brick.

The Brick state inspects whether the ball touches to the one
of the bricks. Now, both the brick should disappear and the
ball should bounce back horizontally at the symmetrical angle
with which it collided to the brick. The state of the bricks
(present or not) are stored in an array in the code so the array
is updated accordingly and the new boundaries of the ball is
set. If all the bricks are hit without dropping the ball to the
bottom edge, the game is won therefore the next state is the
Win state, otherwise the next state is the No_change.

Figure 8. Tetris Code Flowchart

If the ball does come into contact with none of edges or the
objects, it should continue its movement as it is. This is done
in the No_change state and the code returns to the Start state.

In the Win state the game is stopped and “WIN” text is
written on the screen by using bitmaps for the three letters
stored in arrays in the code. Hitting the reset button (Key2)
restarts the game.

In the Loose state the game is stopped and “LOOSE” text
is written on the screen by using bitmaps for the letters stored
in arrays in the code. Hitting the reset button (Key2) restarts
the game.

The game code flowchart is given in Fig. 8.

The designed pong game code is approximately 1100 lines
long, the compilation of the code takes approximately 21
minutes and the code uses about 70% of the logic elements of
the FPGA.

IV. Conclusion
In this study, we developed an original pong game code

that runs entirely on an FPGA chip in VHDL. It can run on its
own without requiring any computer interruption once
programmed, thus provides mobility. The code does not use
any SRAM modules for storage and that improves the speed of
the code. The implementation is done on the Altera DE0 board
but since the code is written using standard VHDL functions,
it can run on any other FPGA boards. Improvements can be
added such as score evaluation and inclusion of several ball
speed levels according to the number of hits on the edges.

174

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-98

References

[1] Sellers, John (August 2001). "Pong". Arcade Fever: The Fan's Guide to

The Golden Age of Video Games. Running Press. pp. 16–17. ISBN 0-
7624-0937-1.

[2] Kent, Steven (2001). "And Then There Was Pong". Ultimate History of
Video Games. Three Rivers Press. pp. 40–43. ISBN 0-7615-3643-4.

[3] Terasic Technologies, Altera DE0 Development and Education Board
User Manual, 2009.

[4] Pong P. Chu, FPGA Prototyping by VHDL examples, New-Jersey,
USA: John Wiley & Sons, 2008.

[5] D. L. Perry, VHDL Programming by Example, 4th ed., New York,
USA, McGraw-Hill, 2002.

