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Abstract— Sizing and redesign of new and existing supply 

chain nodes, like warehouses or logistic hubs are highly data-

dependent tasks, incorporating lots of transaction information 

which are mostly available through ERP systems. Therefore, 

item-based forecasting and lot sizing models, approximations or 

both are used widely when planning new supply chain nodes. 

This paper introduces a new approach of data-aggregation based 

on probability functions of each item (e.g. stock keeping units 

(SKU)) incorporating compensating behavior and time-

dependent aspects. 
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I.  Introduction  
Analyzing material flows and stock levels is a main task 

when trying to optimize single supply chain items, as well as 

considering flows along the supply chain, but much less 

emphasis has been placed on the material flow and 

requirements of single supply chain nodes [1]. Problems for 

this task are the processing of huge amounts of data collected 

and the calculation of reliable overall key indicators on 

different aggregation levels. Especially when planning new 

supply chain nodes, like warehouses it can be a tough job to 

retrieve good expectation-values for the requirements — 

especially capacity and turnover requirements [2] of these 

elements.  

When having large sets of transaction data [3,4] (assumed 

considering only inbound and outbound transactions for one 

node), there are two main trends in retrieving overall 

information: First, the analysis for single SKUs or load 

carriers with time-series models or probability functions. This 

results in precise results for the single item (e.g. a high stock 

level) but neglects interdependencies between different items, 

like adding high stock level predictions of winter-items to the 

results of summer parts, because the association between data 

and time is not kept. Second the usage of aggregated high-

level information like realized turnover or stock level rates 

from the past — which ignore specific item details. Assuming 

a new warehouse C shall be built, with fractions of the stock 

from some warehouse A and fractions of the stock from 

warehouse B — the main question arises what size the new 

warehouse should have and what turnover rates will arise from 

the given SKUs to justify customer needs. 
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A lot of work about the stock level behavior aggregating 

different warehouses has been done under the term risk 

pooling [5], but the effects on turnover rates are not well 

studied. Therefore, a structural approach on incorporating all 

information in sets of probability functions describing the 

article behavior and reducing the amount of necessary data is 

introduced here. Furthermore, the data is reduced much more 

by defining a hierarchical structure where each node 

represents the combined information set by storing the overall 

probabilities over all children. 

One benefit of this structure is the quick alteration of node 

to node associations and, therefore, on-the-fly retrieval of 

predicted node requirements without the need of recalculation 

or repeated simulation of the whole dataset. The presented 

approach furthermore analyzes the dataset for peak usages on 

daily, weekly and monthly base, so high turnover phases like 

deliveries in the morning or seasonal peaks are recognized but 

not accumulated in an imprecise fashion. 

 

II. Literature overview 
Sodhi gives an overview on the integration of strategic 

planning for supply chains [6], but presents primary a 

conceptual sketch on what to do and not a mathematical model 

which shows how to gain the values. 

Much research points to optimal sizing [7,8] and siting 

[9,10] or both [11] warehouses based on cost per SKU or cost 

per most of these papers use the amount of necessary stock 

capacity and turnover rates, but do not formally describe how 

to retrieve this information. Hindi and Toczylowski present a 

multistage model of production items and calculate item lot-

sizes based on absolute item demands [12]. Arnold and 

Furman are determining stock levels in stochastic 

environments based on probability distributions [13], but their 

procedure supports neither turnover rates nor the aggregation 

of information over different levels. While the sizing of supply 

chains nodes — mainly warehouses — is studied mostly under 

cost-minimization aspects, neglecting heterogeneous SKU 

behavior, nearly no effort has been done to develop general 

models to analyze the turnover needs for material flow 

systems inside the supply chain nodes. 
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III. Solution concept 
The process of resolving relevant key-values is described 

by the term ―dimensioning" in the following description and 

donates for the given formal models expected inbound and 

outbound flows for the analyzed node, as well as stock levels. 

These values can be used for further analysis like planning of 

new nodes or structure changes in existing ones like altering 

load carriers. For given service-level the amount of necessary 

storage in the form of load carrier-units, as well as the 

turnover rates shall be calculated independent of the count of 

underlying transactions. 

First, we will describe the calculation of derived stock 

level and turnover rates for single SKUs. Based on this model 

a structural extension for the calculation of combined levels 

like comparable SKUs, load carriers and whole supply chain 

nodes is introduced. 

 

A. Stock level calculation 
Arnold and Furmans core idea of using probability 

distributions and the convolution of them to gain evident 

information about overall stock levels are the foundation of 

the following model, but their model is extended in several 

ways making it usable in a broader context. 

We constitute that a set of historical data is given for each 

SKU representing information about inbound and outbound 

flow, further called transaction data (Considering only 

demands, common lot-sizing models can be used to calculate 

optimal inbound strategies and vice versa.). One transaction T, 

is defined as a tuple  and contains following 

information: 

 The SKU A, on which the transaction is performed ( ), 

 The period t (a specific time-range) when the transaction 

occurred ( ) and  

 The amount of the SKU which has been moved in- or 

outbound ( ), while Tm < 0 represents an outbound 

transaction. 

For one SKU, the associated transaction data is labelled 

with  (outbound transactions) and (inbound transactions). 

The total amount of the outbound flow that A has been 

transferred in one given period t is called  respectively 

(t) for the inbound flow. Because multiple transactions for 

one SKU can occur in one period  is calculated by using 

equation (1). Same holds for  which is defined by 

equation (2). For the example period-length, initially one hour 

is considered. 

 (1) 

 (2) 

 

 

Figure 1. Transaction to stock level mapping for one article 

 

 

The resulting stock level for SKU A at the end of period t 

( ) can be determined recursively using equation (3). The 

initial stock level  must be given as cancellation 

condition, representing the initial stock level. Fig. 1 shows the 

connection between transaction data and resulting stock level. 

  (3) 

Some authors argue that it is sufficient to consider the sum 
of average stock levels to determine the overall stock level. 
These models seem to be based on models defined in less 
computerized concepts. Distinct SKUs can exhibit large 
variations in demand and, therefore, more detailed analysis is 
suggested, by referring to the complete distribution 
representing the probability for each stock level for every 
SKU. The usage of distributions leads to two advances: First, a 
much better data-basis than an average value but also this 
gives the possibility to reduce the transaction set to one 
distribution, which can be processed faster. 

To determine the stock level probabilities of one SKU the 

time-date series  is mapped to the empirical probability 

mass function calculating the total occurrences of each 

stock level in the interval [0, max( )] and setting them in 

relation to all other values. 

Claiming a service grade for sufficient space  for SKU 

A the necessary stock-capacity  can be determined using the 

empirical cumulative distribution function of A’s stock levels 

 (the value where the relative cumulative frequency 

exceeds ). Calling the  quantile of the cumulated 

distribution  short  like defined in equation (4). 

  (4) 

For complete supply chain nodes, not the stock level of one 

article is relevant, but the aggregated stock over all articles. 

Fundamental concepts of risk-pooling can be transferred here: 

It can be formally shown that the aggregated standard 

deviation over many SKUS is always smaller than the sum the 

single standard deviation for each SKU [5]. Therefore, the 

concept of analyzing of the aggregated distribution over all 

SKUs outreaches single SKU stock levels: 
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Figure 2. Convolution of three SKU stock level distributions and retrieval of 

stock- size for reliability  = 80% 

(5) 

Taking n (stochastically independent) SKUs ( ) of the 

same size, the aggregated stock level distribution can be 

obtained by calculation of all possible linear combinations for 

the SKU based stock level distribution p( ) written as j=1 

 [13] (compare Fig. 2). The convolution over the 

stock level distributions for n SKUs is written short as  

(equation (6)). The necessary reserved space to stock n SKUs 

is calculated with equation (7): 

 (6) 

  (7) 

 

B. Turnover calculation 
Besides the analysis for stock levels, the calculation of 

turnover rates supply chain nodes is important. For example in 

highly BTO (build to order) driven supply chain nodes stock 

levels may be constantly low, but huge counts of transactions 

occur being neglected by solely looking at stock levels. 

Turnover rates are often measured as items processed per hour 

— therefore we use this duration as well. One transaction is 

defined as the movement of tm units of SKU A in one 

direction. Therefore, one transaction can force more than one 

handling operations in the supply chain node [14]: Given a 

load carrier with capacity four, two handling operations have 

to be executed to operate one transaction with . 

Opposite to this it cannot be assumed that two or more 

transactions can be aggregated to one operation because the 

exact time of occurrence could differ (in the same period). To 

consider this turnover property, the inbound handled units per 

period are stored separately to the amount of handlings 

per period . When associating the SKU A to a load 

carrier L ( , with a capacity relationship of  (  

units of A fit in L) the amount handled in the inbound flow for 

A in one period can be calculated with equation (8). 

  (8) 

To retrieve the amount of operations in one period, the 

maximum of transactions per hour and inbound handlings per 

hour is chosen (equation (9), where , donates the dis-

tribution of amounts of load carriers (L) to transfer SKU A 

inbound. 

 (9) 

 

 

When designing new material flow systems for supply 

chain nodes, the amount of transferred articles is not the first 

relevant measure, but the amount of transferred load carriers. 

The distribution of inbound transferred load carriers  can 

be calculated by convolving the load-carrier corrected 

distributions of every associated SKU ( ), respecting the 

connection between the amount transferred and the amount of 

transactions: 

 (10) 

 

 

This kind of data-manipulation results in much fewer items 

to process when calculating logistic measures than analyzing 

the whole dataset of transactions, but it leads to complete loss 

of data-to-time relationships. This is a huge problem 

especially when looking at turnover data, because turnover 

frequencies tend to vary strongly on daily, weekly or monthly 

basis. 

To gather the real peaks in turnover behavior, periods are 

extended with an additional identifier in the context to some 

given superior period description called period-system. For 

example, part-periods for the third hour of a day or the second 

day of a week. The count of part-periods is signed with I. The 

distribution view on all SKUs and load carriers is extended 

now with distinct distributions for each part-period. This 

process extends the amount of data to store and compute (I 

times the amount of measures, 96 for transaction-data on an 

hour metric), but is still much quicker to analyze than 

respecting all distinct transaction items.  

The turnover distributions are calculated by indexing all 

periods ( ). Then the data is grouped to sets with same part-

period type (  mod I = ), and distributions are built as 

described above for each set. 

The relative amount of items for each turnover for every 

part-period is calculated with equation (11), whereby  

represents the absolute amount of ingoing turnovers in  in 

all equal-typed part-periods (e. g. ―3 times 5 items of SKU A 

have been dispatched between 8 and 9 o’clock‖). donates 

the total amount of periods with the same index-type (the 

amount of days analyzed and, therefore, the amount of the i-th 

hour). 
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Figure 3. Influence of stochastic demands (a) on the distribution function of 

ingoing transactions without (b) and with (c) dedicated sub-periods ti 

  (11) 

Fig. 3 shows the described model with an example: 

Analyzing one SKU on an undifferentiated hour-scale for a 

given service-grade an underestimate of turnovers can occur  

(zero items / hr.) Distinguishing the hours for one day, much 

better values (6 items / hr. in the worst case) can be achieved. 

The necessary capacity to cover a turnover service grade  

can be identified with the cumulated distribution functions 

 and .The overall representative turnover 

peak is defined as the maximum of the sum from inbound and 

out- bound turnover-values for a given service level in the 

worst part-period. Calling the -fulfilling value , the 

part-period with the highest expected turnover for one SKU 

 max is computed with equation (12). To retain 

readability of the equations short variables ,   are used for 

the load-carrier corrected distributions (see equation (12c) and 

(12f)). Same holds for (12d) and (12g)), but here no load-

carrier correction occurs, because the total amount of 

handlings counts. Equations (12b) and (12e)) revise equation 

(8) for the multi-period model. 

 (12a) 

 (12b) 

  (12c) 

  (12d) 

 (12e) 

  (12f) 

  (12g) 

The resulting values for inbound ( ) and outbound ( ) 

turnovers can be obtained easily using the obtained worst-case 

part-periods: 

  (13a) 

  (13b) 

 

Figure 4. Determination of turnover peak points for an load carrier 

associated to SKUs for given service-level  = 80% 

 

Looking at the peak levels on load carrier-level, the 

amounts can be retrieved again by folding all relevant 

distribution of associated articles. For each part-period  the 

distributions and  have to be computed. The 

worst-case part period in load carrier turnover  can be 

obtained with equation (13). The service grade driven turnover 

key indicators  and  are the results. 

  (14) 

 

 

 

The process of retrieving ingoing turnovers with 

distributions (for a different period-system) is given in Fig. 4: 

First for each SKU the distributions for an early shift, day shift 

and late shift are obtained. Based on them the load-carrier 

capacity corrected distributions are used in the convolution 

stage. Last, the convolved distributions for each shift are 

cumulated to get the - secure turnover values. 

The turnover to cover is, therefore, four in the given example, 

occurring in the early-shift. 

 

C.  Hierarchical information 
aggregation 

The main benefit of the described distribution model is the 

opportunity to rep- resent the complete turnover- and stock 

level values in a hierarchical fashion like shown in Fig. 5. 

Nodes in the graph represent the set of all relevant 



 

146 

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014. 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-92 
 

 
 

Figure 5. Overall logistics structure combining all load carriers L, SKUs A, 

nodes for similar behavior clusters C and root node for the project P 

 

distributions for each SKU and load carrier. The distributions 

for each parent can be obtained by using the shown capacity 

levels (  and distributions of the children. This leads to an 

easy alterable structure. Additional relations like load carrier 

in load carrier (e.g. boxes on pallets), or clusters of similar 

items (like high turnover, or high-stock SKUs) can be 

integrated. Alteration of load-carrier structures or capacities 

can be investigated using a much smaller set of data because 

only the relevant distributions of the children have to be stored 

and computed. 

IV. Conclusion 
In this paper, we have described a model to aggregate 

transaction data in probability distributions without losing 

relevant time relationship. Using these distributions leads to a 

much quicker retrieval of service grade driven planning results 

than raw data sets. The model splits the data source by defined 

periodical structures (period systems) into representing 

probability sets to keep a distinction between representative 

phases like hours of a day or month of a year. Periods are 

defined solely on a formal level to keep flexibility to custom 

problems. Furthermore, the hierarchical structure presented 

leads to additional performance gains because each node 

represents the aggregated probability function over all 

children.  

Alternative hierarchies like altering the used load carriers, or 

different article clustering can be calculated with little effort 

by convolving the probability functions of all direct children. 
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