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Abstract— In this paper a watermark embedding and 

recovery technique based on the compressed sensing theorem is 

proposed. Both host and watermark images are sparsified  using 

DWT. In recovery process, a new method called Least Support 

Matching Pursuit (LS-OMP) is used to recover the watermark 

and the host  images  in clean conditions. 

LS-OMP algorithm adaptively chooses optimum L (Least 

Part of support), at each iteration. This new algorithm has some 

important characteristics:  it has a low computational complex-

ity comparing with ordinary OMP method Also, we develop an 

invisible image watermarking algorithm in the presence of 

compressive sampling using the LS-OMP. Simulation results 

show that LS-OMP outperforms many algorithms.  
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Orthogonal Matching Pursuit,  Orthogonal matching pursuit, 

restricted isometry property, Watermark.  
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I. Introduction 
Digital watermarking is a process in which digital contents 

such as video, image, audio, and text are protected by hiding 
any logo or message into the content. These watermarks 
should be detected only by the copyright holder who has the 
private key [1]. 

In the case of image watermark, for security and 
robustness, digital watermark signals are commonly embedded 
in the spatial or frequency domain. Most watermarking 
algorithms, called lossy watermarking, as a result of loss of 
cover image quality in a watermarking process in some range 
not effected on the quality of cover image, especially when 
recover of watermark in process of fingerprint, the security 
and quality is so important in process of transmission[1-2]. 

The most challenge for the reversible watermarking lies in 
the difficulty to obtain the tradeoff between the watermark 
quality and the watermark robustness for resisting attacks. 
Higher image watermark qualities mean more data need for 
watermarking to be embedded, which yield a better water-
mark robustness. However, with the increasing of the wa-
termarks quality, the quality of host image would be de-
creased. That means, the watermarking technology would 
influence the security of the watermarked image. In recent 
years, compressed sensing (CS) theory provides a feasible 
method to solve this problem [2]. 

II. Background 

A. Compressive Sensing 
The major goal of Compressed sensing (CS) is to recover a 

high dimensional sparse signal from its low dimensional linear 
measurements. The standard CS theorem is based on a sparse 
signal model and uses an underdetermined system of linear 
equations. Obviously, know that if the measurement matrix 
satisfies the condition so called restricted isometry property 
(RIP), the sparse signal can be exactly (or approximately) 
recovered through truly designed recovery algorithms [3]. 

A variety of CS reconstruction algorithms have been 
developed based on convex relaxation, non-convex and 
iterative greedy search strategies. 

In practice, convex based methods have heavy 
computation, while, the iterative greedy methods have lower 
complexity and hence their usage may be practically 
applicable in solving large dimensional CS problems [3-4].  

The main principle of the iterative greedy search methods 
is an estimation of the underlying support set of a sparse vec-
tor. 

The support set contains indices that are non-zero elements 
of a sparse vector. To evaluate the support set, iterative greedy 
search methods use linear algebraic tools such as the matched 
filter and least square solution iteratively [5]. 

Orthogonal matching pursuit (OMP) greedy algorithm con-
structs an approximation by using an iteration process. At each 
iteration, the locally optimum solution is found. This is done 
by finding the column vector in A which most closely 
resembles a residual vector r [5-6]. 

In this study, we propose Least Support Orthogonal 
Match-ing Pursuit (LS-OMP) algorithm and CS based digital 
wa-termarking algorithm using LS-OMP in image reconstruc-
tion. The watermark embedding and detection are usually 
done in DFT, DCT, DWT domain [7-8]. Watermarking of 
compressive sampled images based on sparse DWT image 
representation. Further, we analyze the possibility to 
reconstruct image from such a small set of data, in order to 
provide successful watermark detection after image 
reconstruction. The robustness and security of watermarking 
are enhanced by the usage of Arnold scrambling. 
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B. OMP Algorithm 

Notations: let the signal vector   *           +
   , let the 

support set   *       + denotes the set of indices of the 

non-zero components of x (i.e    ( )  *      +  ),     

       consists of the columns of A with indices    ,    
denotes the transpose of A, and    denotes the pseudo-inverse 

{(   )     }. 

Let us state the standard CS problem, which acquires a signal 

     have a K sparse input, via the linear measurements 
 

                                   y=Φx                                             (1) 

 

Where        represents a random measurement (sensing) 

matrix, and      represents the compressed measurement 

signal. A   sparse signal vector consists of most   nonzero 

indices (      ). The aim of the algorithm is to 

reconstruct a sparse signal   ̂ from   using small number of 

measurements and to achieve good reconstruction quality [9].  
We note that the compressed measurement signal   is the 

linear combination of most   atoms (atom means a column of  
). One condition for sparse signal recovery is to use the Mutual 
Incoherence Property (MIP) [10-11]. The MIP requires the 
correlations among the column vectors Φ to be small. 

The coherence parameter  μ of sensing matrix is defined 
as, 

                            〈     〉                                 (2) 

where  _i, _j are two columns of Φ with a unit norm and 
Φ is the concatenation of two square orthogonal matrices. It 
was first shown by Donoho and Huo [8] in the noiseless case, 
for the setting where Φ is a concatenation of two square 
orthogonal matrices . 

                          K<1/2(1/(μ+1))                                       (3) 

It is based on the algorithmic structure of OMP [12]. 
Proposed algorithm, LS-OMP selects one atom in each 
iteration, according to its future effect on minimizing the 
residual norm.  

III. Least Support OMP 
Theorem 3: For any K-sparse vector x, where        and 

measurement matrix         , and        represents the 

measurement vector matrix, the LS-OMP algorithm perfectly 

recovers x from y =  x, (shown in Figure 1.) if the  

                        ‖    
 ‖
 
 

   

      
‖    ‖

 
                          (4) 

Assume           . 

 

Figure 1.  Illustration of support sets for our theorem 
 

 

A. Least Support OMP (LS-OMP) 
Algorithm 

Inputs:  Φ   ,      , K(number of observations to make), 

L(PoS_ parameter) 

 

Initilaization :      (support set for K) 

            (Least Support set) 

       =0 

Procedure: 

  Φ     

Sort the   set descending    {find the maximum value of auto                                   

correlation  between y and   } 

    =y 

Repeat  

    =   +1 

  [    ,   ,Aug_p]=FastResdue(y,  ,     ,   )    {call function 

FastResdue} 

If ‖    
 ‖
 
 

   

      
‖    ‖

 
 {stopping condition} 

Update position set from[1,L] to [1,   ] 

   exit 

           ;  {upgrade the new value of      } 

    =   
until  i=L  {stopping loop} 

  ̂   (                      )       (   )    {Arrange the 

value of        in position listed of J}                      

Output:      ̂        {find estimated signal x} 

 

Function: FastResdue algorithm 

Inputs: 

     ,     ,     ,   (   ) 

Procedure: 

    ,     Φ -         {union between the set of Φ matrix for 

column indexed by J,  and previous support of size l} 

        
           {  

 
 denote the pseudo-inverse operators 

of set   } 

                                { find residual value} 

Output:     ,   ,Aug_p 

 

B. Proposed Schemes 
Four steps are used for watermarking based CS: 

𝑇  𝑇ℓ 

 

𝑇 

𝑇ℓ 

 

 

L 
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First, watermark embedding and transfer: Arnold transform is 

used on watermark image to add  some security, to embed the 

watermark image and DWT is used. 

Arnold transform can be found as follows [13]: 

              (
  

  
)  .

         
        

/ (
 
 
)                        (5) 

Where     *       + 
Second, compression sensing step: sparsify image by using 

DWT, add it to the results of first step, built sensing matrix, 

then find linear measurement vector. 

Third, compressed sensing recovery step: use proposed LS-

OMP to recover the signal, inverse DWT. 

Fourth, Extracting watermark image: extract watermark 

image, inverse Arnold transform, show results. 
 

IV. Experimental Results 
 

In this section, we present numerical experiments that explain 

the effectiveness of the LS-OMP for watermarking algorithms. 

Reconstructed Signal-to-Noise ratio (R-SNR) is used to 

measure performance of the reconstructed signal. 

                        
‖ ‖ 

 

‖   ̂‖ 
      (6) 

In the first experiment, we create synthetic sparse signals, 

setting the length of the signal to N=1000 and sparsity level to 

K=50. The nonzero coefficients are selected randomly using 

standard Gaussian distribution. The signals are measured using 

measurement matrices that have i.i.d. entries drawn from a 

standard normal distribution with normalized columns. The 

number of random measurements is set to M=200 and Least 

Support parameter L =100. 

Figure 2 shows the reconstruction result of the LS-OMP 

algorithm. The original signal can be recovered within 43 

iterations. 

Figure 3 illustrates the reconstruction time of the ordinary 

OMP and the LS-OMP. As it is observed LS-OMP is faster 

than the OMP. 

 
Figure 3.   Recontruction time of OMP and LS-OMP. 

 

Figure 4. R-SNR values for OMP and LS-OMP. 

 

Figure 4. compares the OMP and OMP-PSK for different 

number of measurements LS-OMP achieves better R-SNR 

values than the OMP.  

 

a)  Original signal, signal length=1000, No. of sparse=50, 

max.Itr=200  

b) Reconstructed Original signal after 43 iteration using  

condition     
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Figure  2. Effect of stopping condition on number of iteration 

needed to reconstruct  original signal 
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For watermarking verification PSNR are used to evaluate the 

accuracy of the reconstructed image. The performance of the 

blind or non-blind watermark extraction result is evaluated in 

terms of Normalized Correlation Coefficient (NCC), for the 

extracted watermark W' and the original watermark W: 

         
 

  
∑ ∑ ( (   )   ̂ 

   
 
   (   ))                     (7) 

                       .
    

   
/ (  )                        (8) 

                 (    )  
∑  ( )  ( ) 
   

√∑  ( )  
   √∑   ( )  

   

                (9) 

Figure 5 gives the visual reconstruction of  test image for 

sampling rate (M/N)=0.5 using the  OMP and the LS-OMP 

and also it  shows the effect of changing watermark factor on 

quality of reconstructed image using both two methods. 

 
 

 

  

 

 

 
 

 

 
 

 

 
 

a)OMP,wavelet type:Coiflets5;  

Itr=50,WF=0.1, PSNR=33.0687 
 

 

 
 

 

 
 

 

 

    

b)OMP, wavelet type: Coiflets5,  

Itr=40;WF=0.08 PSNR = 31.5721 
 

 
 

 

 
 

 

 
 

 

c)LS-OMP, wavelet type:Coiflets5;  
Itr=50, WF=0.1,PSNR=37.5184 

 

 
 

 

 
 

 

 
 

d)LS-OMP, wavelet type:Coiflets5;  

Itr=40, WF=0.08,PSNR=36.5269 

 

 

 
                                                                   

Original   watermark  

image 64x64 

 
 

 

e)Original cover image 256x256 
Figure 5. Comparison of OMP and LS-OMP in 

watermarking process. 
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