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Abstract—The Gabor filter is applied using discrete wavelet 

transform for edge detection and contour tracing on true color 

images, whose wavelet functions provide the high resolution in 

both spatial and frequency domains. The number of wavelets also 

affects the quality of edge detection. To generate more accurate 

outcomes, integration of adaptive contrast stretching and Gabor 

wavelet transform is properly carried out for edge detection and 

contour tracing on broadly selected images. Contrast stretching is 

based on adaptive histogram equalization generalization, where 

the accumulation function is used to generate intensity mapping 

of three primary color components stem from local histograms. 

Any digital image consists of major objects, edges, corners and 

blobs as well as the noises and background fluorescence. Critical 

changes in image properties can be captured via detecting sharp 

variations in the intensity. Although the gray level intensity is 

commonly used for edge detection, the mixture of true color 

components (red, green, and blue) gives rise to an overall appeal 

with better visual effect and color balance by rendering three 

specific colors. In fact, edges, contours and boundaries could be 

detected in various ways by means of intensity changes, however, 

edge broken and false detection are among typical drawbacks in 

classical approaches, which are subject to information loss and 

feature deformity. The popular Canny edge detection (CED) and 

Ant Colony Optimization (ACO) detection are among the most 

effective approaches for edge detection and contour tracing. With 

the benefit of artificial intelligence, the performance of ACO can 

be slightly better than CED, however, the tradeoff is the much 

larger computation complexity. Instead, Gabor wavelet detection 

offers similar computation cost to CED, but dramatically better 

outcomes are produced with relatively less efforts. A comparison 

between Canny edge and Gabor wavelet detection is also made in 

terms of both visual appealing and quantitative evaluation. 

Keywords—Gabor Wavelet Transform, Adaptive Contrast 

Stretching, Canny Edge Detection, Quantitative Analysis  

I. Introduction 
The energy distribution of a light source depends not only 

on the image coordinate (x, y, z) but also on the time and 
wavelength. Each entry of an image matrix is corresponding to 
the brightness or darkness at that pixel.  

Zhengmao Ye, Habib Mohamadian, Hang Yin 

College of Engineering, Southern University 

Baton Rouge, Louisiana 70813, USA 
 

Yongmao Ye  

Broadcasting Department, Liaoning TV Station  

Shenyang, 110000, China  
 

Edge detection is the fundamental technique to identity 
sharp intensity changes and feature discontinuities, due to 
illumination fluctuation, surface orientation, background 
fluorescence and material property. The ideal edge detector 
should generate a set of connected curves that represent 
boundaries of objects and markings, as well as discontinuities 
in surface orientation [1-3]. Search-based and zero-crossing 
based algorithms are two major edge detection approaches. 
The search-based methods seek for the local directional 
optima of the 1st order gradient magnitude to detect edge 
strength. Zero-crossing based methods compute zero crossings 
in the 2nd-order Laplacian of Gaussian filter to capture edges. 
The discontinuous fragments and false edges always occur 
accordingly. Classical approaches involve specific templates 
or smoothing functions, like Sobel and Prewitt methods, which 
are also susceptible to broken edges and information loss. It 
could be tough to connect edges accurately even with the 
compensation techniques. This leads to implementations of 
famous Canny edge detection and ACO detection algorithms. 
The Canny method searches for edges at the local optima of 
intensity gradients using a Gaussian filter, while a chain code 
is necessary because CED has difficulty in connecting the 
broken edges. As two thresholds are introduced to detect the 
strong and weak edges, false detection of noisy information 
may occur easily. The enhanced ACO scheme is implemented 
whose optimal solutions are then used as initial control points. 
It is subject to further adaptive contour tracking. Thus the M-
connectivity is applied to maintain a desired number of the 
connected pixels [3-5]. ACO could produce better edge 
detection at an extra expense, however. Now an effective but 
simple approach is pending. 

Gabor wavelets are well suitable for object representation. 
Although 2D Gabor is not orthonormal wavelet transform, it 
can provide complete representation under some specified 
conditions, which can be applied to various image processing 
issues and further extended to real world problems like vehicle 
verification [6-7]. In order to expand Gabor edge detection to 
open contour tracing and closed boundary tracking without the 
need of additional M-connectivity chain code, fragmentation 
due to weak contrast or strong threshold should be minimized. 
Adaptive image contrast enhancement could be implemented 
which covers histogram equalization generalization. By virtue 
of parameter adjustment, adaptive contrast stretching has 
shown multiple degrees of contrast enhancement, yielding 
complete adaptive equalization at an extreme [8-10]. Thus 
integration of Gabor wavelet transform and adaptive contrast 
stretching based on histogram equalization is proposed for 
simultaneous edge detection and contour tracing. It will be 
applied to a set of true color images with edges and contours 
represented by all three color components, making sharp edge 
contours with optimal color fidelity and visual appeals. The 
merits of integration can be easily observed from visual effects 
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on broad collection of diverse examples. The quantitative 
metrics can be further used to evaluate the impact of proposed 
technology integration on edge detection and contour tracing 
over the well-recognized classical approaches [11-12]. 

II. Adaptive Contrast Stretching 

A. Digital Image True Color Model 
The true color system contains three additive primary 

colors (red, green, and blue), where each color represents a 
primary spectral component in the Cartesian coordinate 
system. Each pixel in a digital image has its own bit-depth 
value, where the grayscale image supports 8-bit and true color 
image supports 24-bit. In true color subspace, each color is 
uniquely mapped into a cube where red, green, and blue are 
placed on three corners. Black locates at the origin and white 
locates at the corner opposite to black. Three other colors 
(cyan, magenta, yellow) are placed on three opposite corners. 
The least value zero is corresponding to color of black and 
highest value one is corresponding to color of white. The grey 
scale lies along with main diagonal that links black and white 
corners. Each color, shade, and hue acts as a vector on or 
inside the cube pointed from the origin. The visual display 
depends on the actual combination of red, green, and blue in 
either unequal or equal intensities (grayscale). The color 
intensity component comes from additive color mixing out of 
three primary coordinates. Image quantization acts as the A/D 
transition between the continuous image and its digital integer 
equivalent. Linearity is assumed such that three primary color 
intensity components in the RGB system are independently 
processed before arbitrary composition true color is reached. 

B. Histogram Equalization and Adaptive 
Contrast Stretching 
Contrast stretching is to enlarge the dynamic range of 

digital images where sharpening is a standard technique. 
Contrast is enhanced locally instead of globally. More visible 
artifacts are sensed and displayed via contrast enhancement 
against the limitation of sensing when low contrast images are 
captured under poor illumination with the limited dynamic 
range. Adaptive neighborhood is set up for each seed pixel 
which applies uniform distribution for contrast transformation. 
All neighboring pixels involve in contrast transformation. It is 
feasible to enhance contrast across the region rather than at 
borders exclusively, so as to cover objects of interests across 
the neighborhood. Contrast stretching can be mapped into a 
specified modification curve. The visual perception under a 
distinguishable degree of color variations depends on the 
levels of contrast from true color or gray level representation. 
Highlights and shadows simply depict high dissimilarity of 
density in image tones for the high contrast images. At the 
same time, low contrast images are corresponding to less 
dissimilarity of density in image tones. The root mean square 
contrast τ is defined as the standard deviation of entire image 
pixel intensities, which is independent of spatial distribution of 
the pixel intensity. It is shown in (1). 

2M-1 N-1

i=0 j=0

[g(i,j) - g ]
τ =

M*N

AVG    (1) 

where g(i, j) denotes a pixel intensity at coordinates i and j for 
any 2D digital image of the size M×N. gAVG indicates the 
average intensity throughout all pixels across a digital image. 

The contrast-limited adaptive histogram algorithm is only 

applied to small regions rather than the entire digital image. 

Within each region, interpolation is necessary so as to estimate 

the brightness of pixels not available. Bilinear interpolation is 

applied which has the merit of exerting small decrement in 

resolution to avoid randomly induced artifacts and boundaries. 

Adaptive contrast enhancement in terms of the histogram 

equalization is implemented. Similar to contrast stretching of 

gray level images, each of three primary color components is 

processed separately using the adaptive histogram equalization 

algorithms. In contrast stretching, the adaptive neighborhoods 

of the foreground and background are constructed, where the 

background size and foreground size are comparable to each 

other. The constraint is introduced to the contrast inside the 

homogeneous areas to avoid amplifying noises. A true color 

image is split into a number of small regions. Within each 

region, histogram is computed with the contrast constraint, 

and then exponential distribution is estimated as a basis to 

create the contrast transform function. Mapping from local 

histogram is generated by specifying the assignment of pixels 

in each small local region. Around the selected seed pixel’s 

neighborhood, adaptive contrast stretching is conducted until 

satisfactory contrast is achieved. The intensity is shown in (2). 

in
out

I (i, j) Min(i, j)
I (i, j) μ

Max(i, j) Min(i, j)





  (2) 

where Iin(i, j) is the brightness intensity value of the measured 
seed pixel, µ is the contrast limitation factor that is chosen to 
produce the desired dynamic range and also to prevent over 
saturation of the image in homogeneous areas. Max and Min 
are maximal and minimal values around the seed pixel 
neighborhood, Iout(i, j) is the enhanced intensity value after 
contrast stretching. The optimal number of small data regions 
depends on the size of source images. Excessive enhancement 
of noises is avoided when using the adaptive schemes since an 
evenly distributed smooth contrast stretching is generated 
across the entire region via bilinear interpolation. Excessive 
enhancement of contrast is also avoided by upper and lower 
level parameter constraint against saturation. The histogram of 
each color component (red, green and blue) contains 256 bins. 
The percentage of counts for each color bin over the total 
accumulation gives rise to the probability distribution. Tuning 
is made adaptively on the exponential function parameters, 
contrast limiting factors and bilinear interpolation weights in 
order to reach high quality contrast stretching. The outcomes 
of adaptive contrast stretching will be used as the input images 
to 2D Gabor wavelet transform for edge detection and contour 
tracing, covering patterns in terms of all three primary color 
components. Furthermore, comparisons with the classical edge 
detection approach will also be made.  
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III. Gabor Transform for Edge 
Detection and Contour Tracing  
The 2D Gabor function h(x,y) is formulated as a Gaussian 

kernel function modulated by a sinusoidal plane wave. In the 

spatial domain, a 2D Gabor filter is the product of an elliptical 

Gaussian and a complex sinusoid. Let s(x,y) be a complex 

sinusoid carrier and g(x,y) be a 2D Gaussian shaped envelope, 

then h(x,y), s(x,y) and g(x,y) are formulated as (3-5), where σx 

and σy are the standard deviations in x and y axes, u0 and v0 

are the spatial central frequency of the 2D Gabor function. 

h(x,y)=s(x,y)g(x,y)    (3) 

0 0-j2π(u x+v y)
s(x, y)=e     (4) 

2 2

2 2
x y

x y
- ( + )

2σ 2σ

x y

1
g(x, y)= e

2πσ σ
   (5) 

The 2-D Gabor filter is thus expressed as: 
2 2

2 2
x y 0 0

x y
- ( + )

2σ 2σ -j2π(u x+v y)

x y

1
h(x, y)=s(x, y)g(x, y)= e e

2πσ σ
(6) 

In the frequency domain, the frequency response of the 2D 

Gabor function is shown in (7) with the frequency shifts along 

the u axis and v axis. 

H(u, v) = G(u-u0, v-v0)    (7) 

Using convolution theorem, H(u, v) is formulated as (8):  
2 2

0 0

2 2

2 2 2 2 2
0 0

(u-u ) (v-v )
-[ + ]

2σ 2σ
-2π [(u-u ) σ +(v-v ) σ ]

u v

x y

e
H(u, v)= =2πσ σ e

2πσ σ

u v

u v  (8) 

where σu and σv are the standard deviations in u and v axes,  

yx
u v

σσ
σ = ; σ =

2π 2π
    (9) 

The 2D Gabor wavelets are generated by two operations of 

rotation and dilation with respect to the Gabor function. 

gmn(x, y) = g(xˈ, yˈ)/ α
m
    (10) 

where the scaling factor s = α
(-m)

 (α>1 and m = 0, 1, ..., 

M−1) and the phase factor θn = nπ /N (n = 0, 1, ..., N−1). M 

and N indicate the total number of scales and orientations. 

After rotation, (xˈ, yˈ) is formulated as (11), which can also be 

expressed as (12). 

n n

n n

cosθ sinθx' x
=

- sinθ cosθy' y

    
    

    
   (11) 

xˈ= x cosθn+ y sinθn and yˈ= - x sinθn+ y cosθn (12) 

Gabor wavelets are symmetric thus the value of θn is 

specified to realize an evenly sampled space within [0, π]. 16 

Gabor wavelets are generated The Gabor filter consists of both 

the real and imaginary components, where two components 

are orthogonal to each other. Integration of adaptive contrast 

stretching and 2D Gabor wavelet transform is proposed for 

edge detection and contour tracing, without the presence of 

fragment linking in terms of the M-connectivity chain code. 

Technology integration of adaptive contrast stretching and 

discrete 2D Gabor wavelet transform is implemented next. 
. 

IV. Case Studies of Typical Images 
In Figures 1 and 2, 12 well-known landmark images and 3 

monument architecture images are selected for experiements. 
Without loss of generality, instead of choosing some standard 
testing images in fields of pattern recognition and image 
processing, selected digital images for numerical simulations 
include pictures taken from several continents of Asia, Africa, 
(North, Central, South) America, Europe, and Oceania. First 
of all, adaptive contrast stretching and discrete 2D Gabor 
wavelet transform are applied to all three primary color 
components separately. Gabor wavelets being generated will 
be combined next so that edges and contours for each primary 
color component can be collected. Additive color mixing at 
each image pixel is then conducted so that composite edges 
and contours in the true color format are produced. Finally, the 
outcomes of edge detection and contour tracing are compared 
with the popular conventional edge detection approach. 

   

   

   

   

   

   

   

   
Figure. 1 Source Images and Contour Images of Landmarks 
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Figure. 2 Source Images and Contour Images of Monuments 

V. Comparisons of Gabor Wavelet 
and Canny Edge Detection 

The integration approach using adaptive contrast stretching 

and 2D Gabor wavelet transform has provided satisfactory 

outcomes in diverse testing cases from the visual appeals. No 

post processing technique is applied above at all to link gaps 

between edges and to represent contours and boundaries. As a 

matter of fact, numerous conventional approaches have been 

designed for edge detection. In a long list of classical methods, 

Canny edge detection is broadly accepted as the best one, so 

Canny edge detection is used as a reference to evaluate the 

proposed approach. The Canny edge scheme detects edges at 

zero-crossings of the second order directional derivative of the 

digital images. The Canny operator is applied step by step 

which uses an optimal Gaussian smoothing filter in (13). 
2 2

2 2

1 x +y
G(x, y, σ)= exp(- )

2πσ 2πσ

     (13) 

The digital image is smoothed by Gaussian convolution.  

H(x, y) = G(x, y) * I(x, y)    (14) 

where G(x, y) is the Gaussian smoothing filter; I(x, y) is the 

intensity of the source image, H(x, y) is the intensity of the 

smoothed image and * denotes convolution operation. The 

first order derivative is applied to compute both the magnitude 

and direction of the gradient. The local optima of the first 

order derivative of H(x, y) is calculated in the direction n for 

locating edges, which is corresponding to the zero-crossing 

point of the second order derivative of H(x, y) as shown in 

(15). The edge direction will be rounded to one of eight phase 

angles in order to represent vertical, horizontal and diagonal 

directions. Non-maximal suppression is then applied to the 

gradient. As a result, edge points whose gradient magnitude 

(strength) reaches a local maximum are located. 

 

2

2

dG
d( *I)

d (G*I) dn= 0
dndn

     (15) 

 
Figure. 3 Comparison of Detection Images by Canny and Gabor Detection  

In (15), n represents the direction of the gradient magnitude 

of the digital image. Each pixel’s edge gradient is computed 

and compared with gradients of all the 8 neighbors along the 

gradient direction. To sketch the curve for a contour and the 

regional boundary, the next step is edge linking so that broken 

edges and line segments in the neighborhood are connected. 

Fragmentation means a spurious loss of edge points, which 

destroys the connectivity of the edge. The chain code criterion 

is introduced which is applied to each visiting node. The chain 

code involves a digital curve being represented by an integer 

sequence based on the relative orientation of the edge pixel to 

neighbors at the 2D spatial domain. The 8-connectivity chain 

code is applied to all the immediate pixels surrounding the 

testing pixel. This is the way to depict the pixel thin curve 

trajectory. To apply the thin chain code, start from one pixel 

endpoint, evaluate in the counter-clockwise direction on the 

next searching pixel, and encode the pixel until stagnation 

occurs or the maximum number of cycles is reached. Canny 

edge detection has the potential of solid edge tracing, clear 

marking and appropriate localization, since thresholding with 

hysteresis (with high threshold and low threshold) will be used 

together. The high threshold is applied to locate true edges as 

starting endpoints initially. However, a high threshold may 

cause important information missing such as the subtle and 

discontinuous edges. If no starting point is captured, the 

algorithm lowers the high threshold so as to make sure that 

starting points will be detected. Directional information is then 

introduced so that edges can be traced throughout the entire 

images. The low threshold definitely helps to detect more 

edges, but noisy and irrelevant information could be detected 

as well, possibly resulting in false edges and poor localization. 

In fact, a smoothing Gaussian filter for Canny edge algorithms 

partially compensate for this effect.  

In Figure 3, two sets of testing results are shown. The 

results from Gabor detection are shown to the left and those 

from Canny detection are shown to the right. When the 

comparison is made between Gabor detection and Canny edge 

detection plus chain code tracking, better visual observation is 

made using Gabor detection. The individual edges, region 

contours and boundaries using 2D Gabor filter are clearly 

shown. Phenomena of curve fragmentation and false detection 

appear frequently at Canny edge detection with ambiguous 

contours and boundaries. It results from noisy information and 

trivial artifacts. Meanwhile, to quantitatively evaluate two sets 

of results based on Gabor detection and Canny detection, two 

metrics of correlation and homogeneity are introduced.   

Correlation acts as a standard measure to interpret linear 

dependency of the color intensity levels among neighboring 

pixels. It depicts the actual amount of local variations across a 

digital image. The correlation ρ is formulated as (16). 
M-1 N-1

i j

i=0 j=0 i j

(i-μ )(j-μ )
ρ = g(i,j)

σ σ
      (16) 

M-1 N-1 M-1 N-1
2

i i i

i=0 j=0 i=0 j=0

σ = (i-μ ) g(i,j);μ [i*g(i,j)]  (for i or j) 
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where M and N represent total numbers of pixels in the row 

and column of the digital image; i and j represent the x and y 

coordinates of the co-occurrence matrix; g(i, j) is the pixel 

intensity in the co-occurrence matrix at coordinates i and j. μi 

and σi are the horizontal mean and variance, and μj and σj are 

the vertical mean and variance. σi and σj are metrics of the 

tone variance of each primary color component. 

Homogeneity acts as another measure of the local intensity 

distribution of the true color or gray level images. Higher 

homogeneity measure values indicate less structural variations 

and lower ones indicate more structural variations instead. The 

homogeneity Φ is formulated as (17). 
M-1 N-1

2
i=0 j=0

1
= g(i,j)

1+(i-j)
        (17) 

where M and N represent total numbers of pixels in the row 

and column of the digital image; i and j represent the x and y 

coordinates of the co-occurrence matrix; g(i, j) is the pixel 

intensity in the co-occurrence matrix at coordinates i and j. 

TABLE I.  IMAGE METRICS BY CANNY AND GABOR DETECTION  

Case 1 Red Green Blue 

Correlation 

Gabor 
0.8794 0.8669     0.8346     

Homogeneity 

Gabor 
0.9308 0.9338     0.9407     

Correlation 

Canny 
0.4233 0.4110 0.4222 

Homogeneity 

Canny 
0.8509 0.8695 0.8540 

Case 2 Red Green Blue 

Correlation 

Gabor 
0.8870 0.8904    0.8957     

Homogeneity 

Gabor 
0.9738     0.9729 0.9718     

Correlation 

Canny 
0.3251 0.3146 0.3320 

Homogeneity 

Canny 
0.9130 0.9173 0.9096 

 

For both Case 1 and Case 2 in Table 1, correlations of three 

primary color components in detection images from Gabor 

wavelet transform are much larger than those from Canny 

detection. It shows that Gabor detection does capture sharper 

edges with the higher intensity contrast when compared with 

Canny detection. For each primary color component, more 

intrinsic information has been discovered by Gabor detection. 

Similarly, for both cases, homogeneities of three primary color 

components in detection images from 2D Gabor wavelet 

transform are greater than those from Canny detection. It 

shows that 2D Gabor wavelet transform is less sensitive to the 

noisy information whose false detection rate is actually much 

lower than that of Canny detection. Based on the quantitative 

metrics, technology integration of adaptive contrast stretching 

and 2D Gabor wavelet transform does give rise to high quality 

edge detection and contour tracing.  

VI. Conclusions 
The 2D Gabor wavelet transform has been introduced in 

this work. Edge detection and contour tracing are conducted 

by convolution of each of three primary color components of 

digital images with the 2D Gabor wavelet in the frequency 

domain. Integration of adaptive contrast stretching and Gabor 

edge detection results in better quality edge detection and 

contour tracing with sharper patterns. The visual effect of the 

proposed simple approach is testified by a set of digital images 

collected from 6 continents. Perfect connectivity of edges and 

corners is observed using Gabor wavelet detection. Rather 

than regular gray level edge detection, color balance is also 

taken into account by mixing intensities of primary red, green, 

and blue color components, so that detail contour information 

and visual appearance are achieved. The actual contour tracing 

outcomes outperform those from combination of widely 

adopted Canny edge detection and M-connectivity chain code, 

which indicates that simple Gabor wavelet detection is indeed 

more successful without loss of critical edges and feature 

deformity. In this case, sharp intrinsic edge and contour 

information has been extracted without the necessity of 

suffering from the excessive computation expense. 
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