

42

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-72

P*: A New Path Planning Algorithm for Autonomous

Robot in an Unknown Environment
Farouk MEDDAH, Lynda DIB*

Abstract— In this paper we present P* “P-Star” witch is a

new algorithm for sensor based path planning.

This work is based on PointBug algorithm [11] where we

applied some improvements and modifications to overcome some

important problems (like infinite loops and the bypass of some

sub-paths).

Moreover, we present some simulation results and

comparisons with PointBug to evaluate and to verify the

performance and the power of the proposed algorithm.

Keywords— Mobile Robot, Path Planning, Unknown

Environment, PointBug.

I. Introduction
Path planning in an unknown environment is one of the

most challenging problems in robotics. A lot of algorithms
were proposed for both finding and optimizing the path
between two points “source” and “target”.

Bug algorithms are based on two behaviors: move toward
the target and avoid encountered obstacles. The difference
between these algorithms is in leaving conditions [3] [4] [5].

In Bug2 algorithm [1] [2] the robot moves toward the
target, when encountering an obstacle the robot follows the
boundary of this obstacle, until meeting the line that crosses
the start and the target point. After, the robot continues
moving toward the target.

Bug2 algorithm weakness was improved by Alg1 [6] and
Alg2 [7] [13], which records hit and leave points to avoid
tracing the same path twice, with a little differences.

In TangentBug algorithm [8] [9] [10], the robot moves in a
straight line toward the target, until encountering an obstacle
the robot starts the boundary-following behavior. To do so,
TangentBug uses local tangent graph. The robot stops moving
along the boundary of the obstacle once it founds a point in
tangent graph closer to target than the boundary’s point. At
that point, the robot continues its path toward the target.

Farouk MEDDAH (Author)

LASE: Laboratoire des Systèmes Embarqués. University of Badji Mokhtar,
BP 12, 23000 Annaba, Algeria.

Lynda DIB (Author)

LASE: Laboratoire des Systèmes Embarqués. University of Badji Mokhtar,

BP 12, 23000 Annaba, Algeria.

Dynamic Point Bug algorithm [15] uses another strategy. the
robot advances and adjusts its direction continuously to the
direction of the target, and when the robot encounters an
obstacle it moves to right or left to avoid this obstacle, then it
continues its path toward the target.

Another powerful algorithm is PointBug algorithm. Its
principle strategy is few different of the others when it
introduces the notion of sudden points. As defined in [11],
sudden point is a point where a sudden change in distance of
sensor’s range is detected, there is three possible changes: (a)
from infinite to some distance in some sides of obstacles, (b)

from some distance to infinite distance in other sides of
obstacles, (c) from some distance to some distance when an
obstacle hides a part of itself or of another obstacle. The first
direction of robot is facing the target point where it starts
searching for the first sudden point. After, the robot repeats
these two actions: (1) Moves towards next sudden point; (2)
rotates in the direction of dmin-line (the line that crosses the
current and the target points) for searching the next sudden
point. The robot stops its displacement once it reaches the
target or when no sudden points were found. When the robot
searches sudden points it ignores sensor reading at rotation of
180° to avoid detecting previous sudden points.

PointBug algorithm is reliable for an environment where
there are not many obstacles and no spiral (it may contain one
or more simple minimum points), some others reachability
limitation are presented in [12] [14].

PointBug algorithm assumes using infinite sensor range
witch does not exist in real world.

This paper is organized such as follows: As P* is based on
PointBug algorithm, so, in section 2 a set of PointBug’s
limitations will be presented. In section 3 we describe our new
algorithm for sensor based path planning. Finally, a set of
experiments will be presented and discussed.

II. PointBug algorithm
limitations

PointBug algorithm has several limitations. In this paper
we try to overcome its most important problems when we
improve this algorithm by applying some modifications and
using some new definitions.

As first problem, there are no tests in PointBug algorithm
if a sudden point was already treated (since it does not record
visited sudden points). This situation can produce infinite
loops in case where the target is surrounded by uniform
boundary obstacle, see Figure 1.

43

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-72

Figure 1: A case of an infinite loop produced by PointBug algorithm.

As second problem of this algorithm is the use of unlimited
sensor range. The robot always detects the most far sudden
points at first. If there are one or more sudden points closer to
the current point they will be detected after. In this case, the
robot can bypass some paths that may lead to the target or
even miss the alone way to destination, see Figure 2.

Figure 2: example where PointBug algorithm can not reach the target.

III. Proposed Algorithm P*
As stated previously, a lot of algorithms were proposed for

both finding and optimizing a path between two points “source
and target”. In this work, we propose a new algorithm called
“P* : PStar algorithm” which is based on PointBug but by
providing it some modifications that ensures the resolution of
its major limitations.

A. Solution of endless cycle problem
In the first part, we propose a solution to the endless cycles

and double treatments of sudden points. For this, the condition
of 180° bound is removed; the points above 180° will not be
ignored. Also, we will record the sudden points and just ignore
the sudden points already treated and their sons as well (all
their succeeding sudden points). The algorithm follows the
same strategy with all points. So, the path generated will be
the same as the previous one. As a result the current path will
be ignored completely. When the robot finds a treated sudden
point once again, it ignores this point and continues the

treatment of the succeeding sudden point. If there is no sudden
point, the robot return to previous one, until reaching the target
or no more sudden point can be found from the first one.

B. Description of P* algorithm
Begin

(1) FindNextDirection and advance to selected direction,
until one of these events occurs:

(2) The robot reaches the target Stop.
(3) The first sudden point was encountered again and all

sudden points were treated: Stop, the target is not
reachable.

(4) The robot must respect these rules:

 If no sudden point was found yet treat the first hit
point as a sudden point.

 The adjustment of the direction angle must not
exceed defined bound value when following
obstacle (this bound is a parameter).

 Don’t turn back until it’s impossible to advance.

 The current sudden point was already treated
ignore all its sons (next sudden points detected
from it).

(5) If a new sudden point was found, go to (1)

End

FindNextDirection
If No sudden point can found Then /* due to limited sensor

range */
The robot tries to move directly as possible towards the

target along dmin-line, if the robot starts travelling away of
target it follows the boundary of the current obstacle

Else
From the current point, the robot numerates all sudden

points can found and goes to the first one.
Endif
If the selected sudden point already visited ignore it and go

to the next one.
End

IV. Simulation and discussion
In this section we simulate our proposed P* algorithm. The

generated robot’s trajectories will be compared with PointBug
simulations results.

A. Simulation comparison when no
problem of PointBug exists

Simulation 1: General case

Using limited sensor range gives different results.
Moreover, the detected sudden points may differ. The
following simulation shows the difference between the results
obtained by PointBug algorithm (with unlimited range sensor
–as default-) and P* algorithm (with limited range sensor).

Start

Target

dmin-line

Start

Target
dmin-line

44

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-72

Figure 3: Trajectory generated using PointBug and P* algorithm in a

simple Office like Environment (Environment and PointBug trajectory are
taken form [3]).

In the case simulated in Figure 3 there are no problems of
PointBug algorithm cited in section 2.

In this simulation, we see that the length of the trajectory
generated by P* algorithm (dotted curve) converges to the
trajectory generated by PointBug algorithm more and more
with the augmentation of robot’s sensor range.

Simulation 2: When non-straight boundary obstacles
encountered

In this case, PointBug algorithm will detect at least one
sudden Point, but P* algorithm may not detect any sudden
point and the generated path will be better.

Figure 4: PointBug follows a non-straight obstacle boundary.

Figure 5: P* follows the previous non-straight obstacle boundary.

Figure 4 shows the trajectory of robot resulting by
simulating PointBug algorithm and where three sudden points
were detected. Nevertheless, Figure 5 shows the trajectory of
the robot when P* algorithm is simulated. In this case we see
there are no sudden points and the trajectory is better than that
in PointBug algorithm.

The above simulation of Pstar algorithm gives 1138mm vs.
1305mm PointBug’s trajectory length.

B. Simulation when there is a problem
of PointBug
Simulation of bypassing some sub-paths by PointBug

The use of limited range sensor does not necessarily give
worse results. Simulation generated in Figure 6 and Figure 7
show a case where the limited range sensor gives a good result
while using unlimited range sensor doesn’t give a result at all.

Figure 6: Example where PointBug algorithm can’t reach the target.

Start

Target

B

D

A

C

PointBug

P*

Start

Target
dmin-line

Start

Target

dmin-line

45

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-72

Figure 7: P* algorithm gives a solution for the previous problem.

Figure 8 P* algorithm gives a solution for the same problem (Error!

Reference source not found.) using a limited range sensor (greater distance).

Figure 6 shows the simulation of PointBug algorithm. In
this simulation, when the robot reaches the first sudden point,
it will detect the one in the opposite corner first. So, instead of
going directly toward the target, the robot goes to the opposite
corner and continues turning infinitely around it.

Figure 7 shows the simulation of P* algorithm. In this
simulation we used a limited range sensor. As result, the next
corner will not be detected and the robot goes directly toward
target.

In the worst case (example Figure 8), P* algorithm will
generate one turn only, because when the robot arrives at the
second time to the first sudden point it ignores the next sudden
point with its sons and goes toward the target. This case occurs
when the ranger sensor is greater than distance between the
robot and the most far sudden point.

V. Conclusion
In this paper we presented a new algorithm P*, which can

overcome the problems of PointBug algorithm. In the general
case and in the absence of the problems of the PointBug
algorithm, by increasing the sensor’s range the trajectory
generated by PointBug algorithm converges to the trajectory

generated by P* algorithm. This difference is due to the use of
unlimited range sensor by PointBug algorithm.

Another feature of P* algorithm is it can be used directly
in a maze without any problem and without changes.

In future, we hope to present an experiment on a real
physical environment.

References

[1] V. Lumelsky and P. Stepanov: “Dynamic Path Planning for a Mobile

Automaton with Limited Information on the Environment”. IEEE
Transactions on Automatic Control Volume 31 No. 11. Pages 1058-
1063. Nov 1986.

[2] Vladimir J. Lumelsky and Alexander A. Stepanov: “Path-Planning
Stategies for a Point Mobile Automaton Moving Amidst Unknown
Obstacles of Arbitrary Shape”. Algorithmica (1987) 2: pages 403-430.

[3] Vladimir J. Lumelsky: “A Comparative Study on the Path Length
Performance of Maze-Searching and Robot Motion Planning
Algorithms”. IEEE Transactions on Robotics and Automation, Vol. I,
No. 1, Feb. 1991. Pages 57-66.

[4] Alpaslan Yufka et Osman Parlaktuna : “Performance Comparison of
Bug Algorithms for Mobile Robots”. 5th International Advanced
Technologies Symposium (IATS’09), May 13-15, 2009, Karabuk,
Turkey.

[5] Liam Paull: “Robust Online Adaptive Sensor-Driven Survey Planning
for Single and Multiple Autonomous Underwater Vehicles”. PhD
Thesis. University of New Brunswick. Octobre 2013.

[6] A. Sankaranarayanan et M. Vidyasagar. “A New Path Planning
Algorithm for Moving a Point Object Amidst Unknown Obstacles In A
Plane”. IEEE Conference on Robotics and Automation, Pages 1930-
1936, 1990

[7] A. Sankaranarayanan and M. Vidyasagar: “Path Planning for Moving a
Point Object Amidst Unknown Obstacles In A Plane: The Universal
Lower Bound On Worst Case Path Lenghts And A Classification of
Algorithms”. IEEE International Conference on Robotics and
Automation, Sacramento, California, April 1991. Pages 1734-1741.

[8] K. Ishay, R. Elon and R. Ehud: “TangentBug: A Range-Sensor-Based
Navigation Algorithm”. The International Journal of Robotics Research.
Pages 934-953. 1998.

[9] K. Ishay and R. Elon: “A New Range-Sensor Based Globally
Convergent Navigation Algorithm for Mobile Robots”. Techion
Department of Computer Science. 1995.

[10] James Ng. “An Analysis of Mobile Robot Navigation Algorithms in
Unknown Environments”. Ph.D. thesis, School of Electrical, Electronic
and Computer Engineering. Feb. 2010.

[11] Buniyamin N., Wan Ngah W.A.J., Sariff N., Mohamad Z: “A Simple
Local Path Planning Algorithm for Autonomous Mobile Robots”.
International Journal of Systems Applications Engineering and
Development. Issue 2, Volume 5, 2011. Pages 151-159.

[12] Noborio, H. and Yoshioka, T.: “An on-line and deadlock-free path-
planning algorithm based on world topology”. Proceedings of the 1993
IEEE/RSJ International Conference on Intelligent Robots and Systems
93, IROS '93. Yokohama, Japan. July 26-30, 1993. Pages 1425-1430.

[13] A. Sankaranarayanan et M. Vidyasagar: ”Path Planning for Moving a
Point Object Amidst Unknown Obstacles In A Plane: A New Algorithm
And A General Theory For Algorithm Development”. IEEE 29th
International Conference on Decision and Control, Honolulu, Hawaii,
December 1990. Pages 1111-1119.

[14] Michael Colin Hoy: “Methods for Collision-Free Navigation of Multiple
Mobile Robots in Unknown Cluttered Environments”. Ph.D thesis.
School of Electrical Engineering and Telecommunications, University of
New South Wales. January 2013.

46

Proc. of the Second Intl. Conf. on Advances In Computing, Electronics and Communication - ACEC 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-029-3 doi: 10.15224/ 978-1-63248-029-3-72

[15] B. Margaret Devi, Prabakar S, “Dynamic Point Bug Algorithm For
Robot Navigation”, International Journal of Scientific & Engineering
Research, Volume 4, Issue 4, April-2013, pages 1276-1279.

