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Abstract—We used the higher orders spectra to improve 

observability of the coding regions. Smoothened spectrograms of 

the second and sixth orders were received. Efficiency of the 

proposed method for protein coding regions was estimated on 

8000 samplings of DNA C. elegans F56F11.4. We used signal-to-

noise ratio to evaluate the accuracy of the measures in predicting 

the coding regions. 
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I. Introduction 
The important problem of DNA sequence analysis is 

coding regions identification. Literature survey shows that 
there is no prevailing method for identification of protein 
coding regions. 

We propose a new method of DNA parametric power 
spectrum density (PSD) estimations for identification of 
protein coding regions in this paper. We used discrete Fourier 
transform method for the second and the higher orders of 
analysis. The higher order spectra shows non-Gaussian 
characteristics of a DNA. The spectra were calculated after 
preliminary DNA transformation on the basis of codons 
redundancy during amino acids encoding. Preliminary DNA 
transformation shows that it is possible to strengthen the 
nucleotides periodicity in the coding regions. 

II. Periodicity of Nucleotides 
Periodicity of nucleotides is caused by redundancy of 

genetic code, preferences in using of specific codons for 
coding of amino acids, and prevalence of proteins by certain 
amino acids. There is a hypothesis that triplet periodicity can 
emerge as a result of a need for control of mutations using 
shift of a reading frame. In real genome DNA sequences, 
periodic characteristics appear on a strong random 
background. Such a randomness in caused by point mutations, 
insertion segments, deletions, translocations, etc. 
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The insertion segments and deletions are the reason of 
period length variations. The 3-base periodicity is a universal 
property of protein coding regions. There are some 
explanations about origin and universality of the 3-base 
periodicity р = 3 [1]. Authors in [2] explain it by evolutionary 
origin of genetic code and dominance of codons in mRNA on 
an early stage of a molecular evolution. The most rapid case is 
expressed by more frequent occurrence of G in the first 
position of mRNA triplets, and avoidance of G in the second 
positions (G-non-G-N). The same pattern can be observed in 
the form (RNY) (R-is A or G, Y is C or U, N is any base). 

III. The Spectral Analysis of DNA 
Coding Regions 

Spectral analysis is traditionally used to identify protein 
coding regions. We calculated PSD estimations on the 
frequency that corresponds to the 3-base periodicity of a DNA 
sequence. The Voss mapping was used in this paper. 
Spectrograms were calculated for a moving window along the 
DNA sequence using discrete Fourier transform 
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where k = 0, … , N – 1, m = {A, C, G, T}. If we take the 
moving window's size N, then in the magnitude of Xm the 
frequency index is equal to k = N / 3. 

In the Voss mapping [3] a symbol sequence is divided into 
four numerical sequences. Coefficient that were calculated in 
[4], are a = 0.1 + 0.12j, t = - 0.3 - 0.2j, c = 0, g = 0.45 - 0.19. 
We can show that parametric PSD also can be expressed by 
a square of absolute value spectrum sum. We propose 
a parametrical autoregressive (AR) estimation of spectrum on 
the base of an additive linear prediction AR model. This 
spectrum estimation improved frequency resolution of the 
traditional AR spectrum. The additive AR model can be used 
for spectral analysis DNA. 

AR model can be defined using an operator form 

  

where a[t] – is a prediction error such as white noise. Equation 
(1) can be also presented in the following form 
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This expression describes generating linear filter with 
a feedback loop. The input process of this filter is a white 
noise a[t] and the output process is a correlated process x[t]. 
The PSD is equal by form to the amplitude-frequency 
characteristic (AFC) 

 

and is depended on AR coefficients. AFC of a generating 
linear filter has inversely AFC of prediction filter. In some 
cases it is useful to calculate AR coefficients of generating and 
inverse prediction filter using spectral characteristics of x[t] or 
AFC. For example, for spectral peak of DNA sequences with 
period 3 we can find a relation with AR coefficients and PSD 
characteristics of spectral peaks and broadband at the level 
of 0.5. The stationarity condition of AR process follows from 
the robustness condition of generating AR filter with transfer 
function [5]. Stationarity condition of a stochastic AR process 
follows from a characteristic equation 

  

If the roots c [i]  of the characteristic equation (3) lie inside 
the unit circle then the process is stationary. AFC of inverse 
prediction filter is always robust because it does not contain 
the feedback loop. From (3) the following equality follows 

 

The roots of the characteristic equation fully describe the 
AR model. If a root is a real it can be represented using an 
exponential function 

 

where f[i] – broadband of i-th spike PSD, 
T – quantization interval. 

We can make random series which is a sum of four known 
components. Such a random process that is described by 
a linear prediction model we call additive linear prediction 
process. Generating filter for an additive linear prediction 
process is composed by four parallel connected generating 
filters with the same input generating process. Gaussian and 
non-Gaussian white noise is used as input generating process. 

Additive stationary stochastic process of AR is represented 
by an equation [6, 7] similar to (2). The expression for 
parametric PSD of additive AR model is the following 

 

Our investigations [6] show, that this expression gives 
a more exact estimation of PSD by Yule-Walker and Burg 
algorithms than traditional parametrical AR estimation of 
PSD. The resolution capability of proposed estimation (4) is 
significantly higher because we calculated mutual spectra of 
the additive processes, not only separate spectra of the 
processes. Naturally, Fourier’s spectra of the additive 
processes have the same features. 

In the work [4] optimal weighting coefficients a, t, c, g are 
described for fixed DNA region. DNA spectrum is presented 
like sum of spectrums for each nucleotide. Therefore, such 
spectrum of DNA is described by spectrum of additive linear 
prediction AR model. 

The most of the coding regions studies the prediction 
Fourier analysis is used. Therefore, we analyzed the efficiency 
of our methods using the Fourier’s spectra. 

Efficiency of the proposed spectral analysis method for 
protein coding regions was estimated on the area of 8000 
DNA samples of C. elegans F56F11.4 
(www.ncbi.nlm.nih.gov). The spectrogram of the DNA is 
shown on the Fig. 1. Analysis of the figures shows an 
improvement of the gene prediction. 

 

Figure 1.   The spectrogram of the second order of the DNA area 

IV. The Spectral Analysis of 
Higher Orders 

Spectra of higher orders are necessary to study various 
properties of non-Gaussian processes [8, 9]. A non-Gussian 
process is fully described by a set of spectra of all orders, 
higher orders spectra as well as cumulant functions can 
contain additional information about non-Gaussian stochastic 
process. It is known, that DNA sequences possess 
non-Gaussian properties with nonzero skewness and kurtosis 
values. 

Apart from researching of spectral second order statistics 
of coding regions, possibilities of spectral higher order 
statistics using the Fourier method were studied. For analysis 
of non-Gaussian processes we used Fourier sixth order 
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statistics of a DNA sequence after replacement of some 
codons to the synonyms. This characteristics has been 
received by the product of Fourier transform sequences. The 
spectra of k-th order of an additive DNA sequence consists of 
an additive sum of four nucleotides sequences. It is calculated 
using the expression 

  

Spectra of higher orders for stochastic processes can be 
useful in various real-life situations. Spikes in a spectrum of 
higher order are more powerful then spectra of the second 
order for some stochastic processes. The reason for this is in 
the difference of density distribution of a useful signal and 
a noise of a coding region and in the difference between 
coding and non-coding regions. A coding sequence can be 
considered as a mixture of a useful signal and a noise. If 
statistical characteristics of the white noise are close to the 
Gaussian distribution than that of the useful signal’s 
characteristics the effect of the white noise on the accuracy of 
the higher order spectra estimation is less than that of the 
effect on the spectra of the second order. To receive the most 
accurate spectrogram it is necessary to select the spectrum’s 
order. Even in a case of a correlated noise that “covers” 
spectrum of the useful signal it is possible to detect this 
spectrum using an appropriate spectrum’s order. An 
application of a nonlinear transformation to calculate higher 
order spectra (for example, for periodogram method involution 
to k-th degree) intensifies powerful components of the 
spectrum of coding regions. 

Spectra of higher orders are multidimensional and depend 
on k–1 frequencies. But in many cases instead of 
multidimensional spectra we can analyze unidimensional 
spectra of higher orders. Unidimensional spectra are certain 
sections of multidimensional spectra. In our work we used 
a section, where f2, f3, … , fk–1 = 0. 

Generally, to analyze spectra of higher orders spectra of 
the third and fourth orders are used. Spectrum of the third 
order sometimes is called bispectrum [9], and spectrum of the 
fourth order is called triplespectrum. It is difficult to determine 
the most effective spectrum’s order beforehand. It depends on 
multidimensional distributions of the coding and non-coding 
regions. Hence, it is necessary to select an appropriate 
spectrum’s order. 

The spectrograms of the sixth order that were calculated 
using (5) when k = 6 of analyzed a DNA sequence before 
replacement of codons by synonyms and after replacement of 
the spectrogram are shown on the Fig. 2. Analysis of the 
figures shows that spikes of the first, third, fourth and fifth 
spectrograms of the coding regions are higher. Spectrograms 
were received after replacement of codons by synonyms. But 
at the same time the level of spectrogram’s non-coding regions 
became higher. 

When the spectrum’s order is high the spectrogram’s level 
of non-coding regions decreases. The Fig. 1 and Fig. 2 show 

that the spectrogram’s level of non-coding regions is 
significantly low. We can observe a significant difference in 
the spectrogram’s level of coding and non-coding regions 
before and after the replacement of codons to synonyms. The 
strongest decrease of the spectrogram’s level of non-coding 
regions appears when using spectra of the sixth order. To 
demonstrate the decrease of the spectrogram’s level of the 
non-coding regions we will limit the spectra’s amplitude 
Fig. 3(b) by level 10

7
. The clipped spectrograms are shown in 

Fig. 4. 

Statistical averaging is not used in the methods of the 
spectrograms calculation for DNA sequences. Therefore, 
figures of spectrograms have strong fluctuations. The 
fluctuations can be decreased using smoothening windows and 
filters. In our paper, we used AR generating filter for 
smoothing. Filtration using an AR filter is described in (1).The 
input process in this case is a mapping DNA sequence after 
the replacement of codons to synonyms, but not white noise. 
The spike’s frequency of the amplitude-frequency 
characteristic is N / 3, where N – length of the moving 
window, which we used for calculation of the spectrogram. 

The bandwidth is selected to receive appropriate 
smoothing and not to accept shifting of the spectrogram 
coding regions on the x-coordinate. A narrow-band AR filter 
amplifies smoothing of the spectrum. But the lower the filter’s 
band the higher the filter’s lag. This is the reason for the 
spectrogram’s displacement. Smoothed spectrograms that 
were received for spectra estimations when k = 2, 6 are shown 
in Fig. 3. Clipped smoothed spectrograms are shown in Fig. 5. 
Comparison of Fig. 3 and Fig. 5 show, that the shift of the 
spectrograms of the coding regions after smoothing is small. 

 

Figure 2.  The spectrogram of sixth order of the DNA area: (a) – before the 

replacement of codons to synonyms; (b) – after the replacement of codons to 

synonyms 

(a) 

  (b) 
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Smoothened spectrograms of the second and sixth orders 
after the replacement of codons by synonyms are shown 
in Fig. 3. 

 

Figure 3.  Smoothen spectrograms after the replacement of codons to 

synonyms of data: (a) – for spectrogram on Fig. 1; (b) – Fig. 2(b) 

Clipped spectrograms after the replacement of codons by 
synonyms of sixth order with thresholds are shown in Fig. 4. 

 

Figure 4.  Clipped spectrograms and smoothen clipped spectrograms after the 

replacement of codons to synonyms of data with thresholds when  
p = 6: (a) – clipped spectrograms with threshold 107 when p = 6; 

(b) – smoothen clipped spectrograms with threshold 3  1014 when p = 6 

As it shown in Fig 2(a), when the spectrogram’s order is 
higher the strong growth of the second spike substantially 
reduces observability of the other spikes. Improving the 
observability of all spikes and, therefore, of coding DNA 
regions, is possible if spectrum is limited by the level. 

 GCTA gXcXtXaXX 1  

When spectrum’s order is rising, we can see an equal rise 
of all spectrogram’s spikes with respect to the noise level 
(Fig. 5). 

 

Figure 5.  Smoothed clipped spectrograms of data for: (a) – p = 2; 

(b) – p = 6. 

To evaluate the accuracy of the measures in predicting the 
coding regions employed the Signal-to-Noise Ratio (SNR) 
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where ΣPe – the sum of spectrogram’s counts of coding DNA 
regions, ΣPi – the sum of spectrogram’s counts of 
non-coding DNA regions.  

Using spectrograms clipped by levels does not influence 
fundamentally on the coding regions identification when the 
spectrum’s order is rising. However, such nonlinear 
transformation that includes clips and powering significantly 
increases signal-to-noise ratio. Signal-to-noise ratio depends 
on the clip’s level. SNR grows when clip’s level is growing, 
but when clip’s level of normalized by maximum spike of 
a spectrogram is more than 0.7, the level of second spike is 
significantly higher than the rest four spikes’ levels of the 
spectrogram. Therefore, the high SNR appear only due to high 
level of the second spike. This significantly decreases 
possibility of the coding regions identification. Dependencies 

(b) 

(a) 

(a) 

(b) 

(a) 

(b) 
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of SNR on the spectrum’s order using clips 0.4, 0.6, 0.7 are 
shown on Fig. 6. According to the Fig. 6, SNR is as high as 
the k degree. The accuracy of coding regions identification 
does not depend on the clip’s level. When the spectrum’s 
order rises the accuracy of the coding regions bounds does not 
change very much as it is shown on the Fig. 7. Therefore, we 
can divide the task of the coding regions identification in two 
stages. The first stage is detection of the coding regions using 
spectrograms of higher orders. The second stage is estimation 
of coding regions’ limits using spectrograms of the second and 
higher orders. A similar approach is used in radiolocation, 
where the task of signal’s detection and the task of parameter’s 
estimation of a radar object are solved using different devices 
and methods. 

 

Figure 6.  Dependence of SNR from spectrum’s order clipped by levels:  
1 – 0.4; 2 – 0.6; 3 – 0.7 

As it shown in figure, when the model’s order is high, the 
SNR is higher. Smoothing using AR filter does not influence 
on SNR value. 

 

Figure 7.  Dependence of parameter p from spectrum’s order. 

V. Conclusions 
Using the higher orders spectra for spectral analysis it is 

possible to raise spectrograms’ level of the coding regions and 
to reduce spectrograms’ level of non-coding regions. In the 
paper the spectrograms of the sixth order was used. As it is 
shown in the figures, the most effective spectrograms we 
received on the base of the sixth order spectra. Using 
smoothening AR filter allows to decrease fluctuation of the 
spectrograms and to intensify the spectrograms on N / 3 

frequencies. DNA sequence is an additive process and, 
therefore, it is more efficient to use expression (4) for additive 
process’s spectral estimation with coefficients from [4]. This 
expression gives more precise spectral estimations than that of 
the traditional parametric spectral methods of spectral 
estimation. Using of smoothed clipped spectrograms of higher 
orders improves observability of the coding regions. 
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