
 

30 

Proc. of the Second Intl. Conf. on Advances In Bio-Informatics, Bio-Technology and Environmental Engineering- ABBE 2014. 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-053-8 doi: 10.15224/ 978-1-63248-053-8-07 

 

Inferring Genes Involved in Metabolic Pathways  

by Using Support Vector Machines 
 Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani 

 
Abstract—The development of a method to annotate unknown 

gene functions is an important task in bioinformatics. The 

identification of the relevant genes to metabolic pathways is also 

helpful for understanding the genes. However, the relationships 

between metabolic pathways and genes are complicated. Thus, it 

is difficult to identify the relevant genes by linear models. In this 

study, we propose a new method based on the SVM approach, for 

inferring the genes involved in metabolic pathways from the gene 

expression profiles. To improve the classification performances of 

SVMs, we developed a method for finding the important 

interactions for classification, from a huge number of experiment 

combinations. The interactions selected by our method were 

added as new features to the training data set of the SVMs. 

Furthermore, feature selection by the Gini importance was 

applied, to avoid overlearning of the SVMs. To demonstrate the 

validity of our method, we trained SVMs with Saccharomyces 

cerevisiae gene expression profiles against eight metabolic 

pathways, and evaluated their classification performances. As a 

result, we achieved high performances with some metabolic 

pathways. Thus, our method is useful for inferring the relevant 

genes to metabolic pathways. 
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I.  Introduction 
For understanding life system, it is important to identify 

the genes that are involved in metabolic pathways. Because 
gene expression profiles reflect various intracellular 
phenomena, gene expression profiles are useful for revealing 
the relevant genes to metabolic pathways. Pearson product-
moment correlation coefficient has been utilized to gene 
expression profiles for revealing the relevant genes [1-3]. The 
method is based on the idea that the coexpression genes have 
similar function. However, the correlation coefficient can 
express only linear relationship between genes. Thus, we 
cannot utilize the method to infer the relevant genes which 
have non-linear relationship with other relevant genes. 

Support vector machines (SVMs) [4-5] are useful to treat 
this problem. SVMs are a supervised machine learning method 
for classification. SVMs can treat non-linear relationships 
between genes by the kernel trick. Brown et al. [6] utilized 

SVMs with gene expression profiles to recognize six 
functional classes of genes: tricarboxylic acid (TCA) cycle, 
respiration, cytoplasmic ribosomes, proteasome, histones, and 
helix-turn-helix proteins. They compared the classification 
performances of the SVMs with those of four machine 
learning algorithms (Parzen windows, Fisher‟s linear 
discriminant, C4.5, and MOC1), and showed that the SVMs 
achieved the best classification performance. 

In this report, we propose a method based on the SVM 
approach, for inferring the relevant genes to metabolic 
pathways from the gene expression profiles. Since the 
relationships between metabolic pathways and genes are 
complicated, various gene expression profiles are needed to 
infer the relationships. However, it is costly to measure the 
expression values under numerous new experimental 
conditions. Instead of adding new experiments to the gene 
expression profiles, we introduced the interaction between 
experiments to the SVM training data set. Since there were too 
many experiment combinations to add to the data set, we 
developed a new method to find the important interactions for 
classification from a huge number of them. Before we trained 
the SVMs, we performed feature selection by the Gini 
importance [7-8], to avoid overlearning of the SVMs. To show 
the validity of our method, we then trained the SVMs with the 
gene expression profiles of Saccharomyces cerevisiae against 
eight metabolic pathways defined by KEGG, and evaluated 
their classification performances. 

II. METHODS 

A. Gene Expression Profiles 
We compiled the profiles of 4,783 Saccharomyces 

cerevisiae genes, which were measured in 4,214 experiments 
by Affymetrix arrays. They were downloaded as raw CEL 
files from the Gene Expression Omnibus (GEO) database [9]. 
The raw CEL files were processed by MAS5.0 [10-11]. Each 
experiment was normalized with mean 0 and variance 1. 

B. Metabolic Pathway 
We utilized eight metabolic pathways which are classified 

at the KEGG PATHWAY database [12]. Table 1 shows the 
list of metabolic pathways and the number of genes involved 
in each metabolic pathway. 

C. Support Vector Machines 
To infer whether a gene is involved in a certain metabolic 

pathway, we trained the SVM classifiers from the gene 
expression profiles, where the profiles were mapped to a 
higher dimension space by the kernel trick. We define the 
positive genes as the genes that are involved in the certain 
pathway, and the negative genes as the genes that are not 
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involved in a certain pathway. Given a profile   of a gene, the 
SVM method constructs the model as follows:  

{
   ( )                           

   ( )                           
  (1) 

where   is the vector of coefficients,    is a bias parameter 
and  ( ) denotes a feature-space transformation. 

Let us suppose that we have a training data set, which 
consists of   profiles   ,…,    with the corresponding target 
values   , …,   , where    is    when the gene   is positive 
and    is    when the gene   is negative. The training 
algorithm of the soft margin SVMs [4] solves the optimization 
problem 
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subject to 

  (   (  )   )                       (3) 

where   is a constant that controls the error penalties. 

The optimization problem (2) can be expressed only in 
terms of a kernel function  (     )   (  )  (  ). Thus, 
we implicitly mapped the profiles to a higher dimension space 
by the kernel function.  

D. Feature Selection by the Gini Importance 
The compiled gene expression profiles included irrelevant 

experiments, which lead to overfitting. We utilized the Gini 
importance to select only the relevant experiments before 
model construction. The Gini importance [7-8] gives a 
relevance score to each experiment. The Gini importance is 
based on the classification algorithm, random forests [7]. 
Random forest classifiers are composed of decision trees. 

CART: Classification and regression trees (CART) [13] 
are a type of decision trees used by random forests. The CART 
method builds binary decision trees based on the impurity of 

each node. The Gini impurity, which is one of the node 
impurity measures used in CART, is defined as 
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where   
( )

 and   
( )

 are the numbers of positive genes and 
negative genes at a node  , and    is the total number of genes 
at node  . The Gini impurity   ( ) reaches 0 when the ratio of 
classes of genes at the node   inclines to one class. Thus, we 
can measure how well a potential split is separating the 
samples of the two classes at the node   by calculating  ( ). 

The decrease   ( )  of the Gini impurity is calculated 
from splitting the node   to two sub nodes,    and   , by a 
threshold    on a variable  , as follows: 

  ( )   ( )  {
   

  

 (  )  
   

  

 (  )}  (5) 

where    
 and    

 are the numbers of genes at nodes    and   , 

respectively. At each node, the decrease   ( )  is calculated 
over all variable   and all available threshold   . Then, we 
determine    and   

 , which maximize   ( ), and we split each 

node by   
  on    and make the decision tree grow. 

Random Forests: Random forests are an ensemble 
learning method for classification. The main idea of random 
forests is to obtain better predictive performance by combining 
many weak decision trees. The training algorithm of random 
forests repeatedly builds CART on bootstrap samples with 
random subsets of the experiments. 

Gini Importance: Important experiments for building 
decision trees decrease the Gini impurity greatly. The total 
decrease in Gini impurity of an experiment yields the 
importance of the experiment. The Gini importance   ( ) of 
an experiment   is defined as the total decrease in the Gini 
impurity of the experiment for all nodes   in all trees  : 

  ( )  ∑ ∑    (   )

  

  (6) 

where    (   )  is the decrease in the Gini impurity that 
results from a split on experiment  . 

E. Selection of Interaction Terms 
To select the important interaction terms from the huge 

number of experiment combinations, before we apply feature 
selection by the Gini importance, we developed a new method 
for improving the SVM classifiers, by adding the interaction 
terms between experiments to the profiles as additional 
dimensions. In our method, there are four steps. 

Step 1. We discretize the gene expression profiles to 
focus on whether the genes are actually significantly 
expressed. Let   (   )  be an     matrix, which 
includes the gene expression profiles of   genes measured 

TABLE 1. LIST OF METABOLIC PATHWAYS AND 

THE NUMBER OF GENES INVOLVED IN EACH PATHWAY 

Metabolic pathway # of genes 

Carbohydrate metabolism (Crb.) 205 

Energy metabolism (Enr.) 103 

Lipid metabolism (Lpd.) 116 

Nucleotide metabolism (Ncl.) 116 

Amino acid metabolism (Amn.) 157 

Metabolism of other amino acids (Oth.) 49 

Glycan biosynthesis and metabolism (Gly.) 75 

Metabolism of cofactors and vitamins (Vtm.) 107 
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in   experiments. The gene expression value of gene   and 
experiment   is discretized by the threshold   , as follows: 

   
  {

         

            

         

  

                  

(7) 

Step 2. We find the target vectors. The target vector of 
experiment   is defined as the vector that has a perfect 
interaction with the discretized expression vector 
(   

       
 ) . Thus, when an experiment vector is 

similar to the target vector, it is assumed that the 
experiment has an interaction with the experiment  . The 
target vector    (   

 ) is defined as satisfying 

   
     

                        (8) 

Step 3. We measure the similarities between the target 
vectors and the discretized gene expression profiles. Inner 
products were utilized as the method to measure the 
similarities. A smaller inner product of two experiments 
indicates more similarity between the experiments. The 
similarity   is then calculated by 

     
    (9) 

We replace the diagonal elements of   with 0. 

Step 4. We obtain the value   
   

 of the interaction term 
between the experiments   and    of gene  , as follows: 

  
   

           
         
            *   |    |    |+  

(10) 

where    is the number of the experiment that is similar to 
the target vector of the experiment  , and the parameter    
is the threshold for determining whether experiments   and 
   have an interaction. 

F. Experimental Design 
We utilized the radial basis function (RBF) kernel for 

SVMs. The RBF kernel is defined as 

  (     )     (  ‖     ‖ )        (11) 

We set the parameter   to    ⁄ , where    is the number of 
elements of the SVM input vector. The parameter   of SVM is set to 1. 

Since the number of negative genes is larger than the 
number of positive genes, we performed down-sampling 
against the negative genes, to equalize the numbers of negative 
genes positive genes. We performed the down-sampling 3 
times, and calculated the average of the accuracies by 10-fold 
cross validation against each negative gene sample (that is, we 
constructed 30 SVM classifiers with each metabolic pathway 
and calculated 10 accuracies). The performance of each 

metabolic pathway‟s classifier was reported by the average of 
the 10 accuracies. 

We repeatedly constructed 500 CARTs in the random 

forest learning. The √  experiments were selected randomly 
in each construction, where   is the number of experiments 
before the random selection. We reported the classification 
performance of each metabolic pathway in the case where we 
set the numbers of selected experiments from 10 to 3,000 
against the original gene expression profiles. We also reported 
the performance in the case where we set the numbers of 
selected experiments from 10 to 1,000 against the gene 
expression profiles that included the interaction terms. 

We set    to 0.0, 0.4, 0.6 and 1.0, and selected the 
interaction terms as the top 1,000   , instead of choosing the 
threshold   . The original experiment vectors and the selected 
interaction term vectors were combined into one matrix, as the 
new gene expression profiles. When we combined them, we 
used only the original experiment vectors with the Gini 
importances that were within the top 500. We utilized the 
feature selection by the Gini importance to assess the new 
gene expression profiles. 

III. Results 

A. Feature Selection by the Gini Importance 
We calculated the Gini importance of each experiment 

from the experiment vectors. Fig. 1 shows the histogram of the 
Gini importances. The details about the number of 
experiments in each metabolic pathway are shown in Table 2. 
In all of the metabolic pathways, the Gini importances of most 
experiments were less than 0.05. The number of unimportant 
experiments was the largest in “metabolism of other amino 
acids”: there were 3,747 experiments with the Gini 
importances that were less than 0.05. On the other hand, the 
number of unimportant experiments was the smallest in 
carbohydrate metabolism: there were 2,840 experiments with 
the Gini importances that were less than 0.05. The correlation 
coefficient between the number of experiments with the Gini 
importances that were less than 0.05 and the number of genes 
in each metabolic pathway was -0.99. 

In Fig. 2, we show the accuracy of each metabolic pathway 
in the case where we varied the number of selected 

TABLE 2. THE NUMBER OF UNIMPORTANT EXPERIMENTS 

Metabolic pathway 
Gini importance 

< 0.05 0.05 ≤ 

Carbohydrate metabolism 2,840 1,374 

Energy metabolism 3,473 741 

Lipid metabolism 3,327 887 

Nucleotide metabolism 3,326 888 

Amino acid metabolism 3,083 1,131 

Metabolism of other amino acids 3,747 467 

Glycan biosynthesis and metabolism 3,601 613 

Metabolism of cofactors and vitamins 3,382 832 
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experiments from 10 to 3,000. In all of the metabolic 
pathways, the highest accuracy was achieved when the 
number of experiments was set between 100 and 400. The 
accuracies decreased when the number of experiments 
exceeded 400. The largest decrease was measured in “glycan 
biosynthesis and metabolism”. Its highest accuracy was 
86.2%, and its lowest accuracy over 400 experiments was 
76.4%. The difference in the accuracies was 9.8%. On the 
other hand, the smallest decrease was measured in “energy 
metabolism”. Its highest accuracy was 78.7%, and its lowest 
accuracy over 400 experiments was 76.9%. The difference in 
the accuracies was 1.8%. The correlation coefficient between 
the difference and the number of genes in each metabolic 
pathway was -0.14. 

To show the effect of feature selection, we compared the 
accuracy against all experiments and the highest accuracy in 
Fig. 2, for each metabolic pathway. The detailed comparison is 
shown in Fig. 3. In all of the metabolic pathways, the highest 
accuracy in Fig. 2 was higher than the accuracy against all 
experiments.  The best improvement in the accuracy was 
achieved in “lipid metabolism”: the accuracy of “lipid 
metabolism” against experiments selected by the Gini 

importance was 72.9%, which was 11.5% higher than its 
accuracy against all experiments. On the other hand, the worst 
improvement in the accuracy was measured in “carbohydrate 
metabolism”: the accuracy of “carbohydrate metabolism” 
against experiments selected by the Gini importance was 
76.0%, which was only 2.1% higher than its accuracy against 
all experiments. 

B. Model Construction Including Internal Terms 
The histogram of |    | is shown in Fig. 4, where    was 

set to 0.0. The details of the ideal and actual max values of 
|    | in each metabolic pathway are shown in Table 3. The 

ideal max value of |    | is equal to the number of genes in 
each metabolic pathway. In “metabolism of other amino 
acids” and “glycan biosynthesis and metabolism”, the actual 
max value is greater than half of the ideal max value. On the 
other hand, in the other metabolic pathways, the actual max 
value is less than half of the ideal max value. These results 
suggest that none of the experiment vectors were similar to the 
target vectors. Thus, there were no experiments that strongly 
interact with other experiments. 

We calculated the Gini importance of each experiment 
from the new gene expression profiles, which consisted of 
experiment vectors and interaction vectors. Fig. 5 shows the 
histogram of the Gini importances. The details of the number 
of experiments in each metabolic pathway are shown in Table 

 

Fig. 1. Histograms of the Gini importances, calculated from only the 

experiment vectors in each metabolic pathway. The bin width was set to 

0.05, which was selected as the majority of the widths suggested by 
Sturges' formula in each metabolic pathway. 

 
Fig. 2. Accuracy of each metabolic pathway when the number of selected 

experiments was set to 20, 40, 60, 80, 100, 200, 300, 400, 500, 600, 700, 
800, 900, 1,000, 2,000, and 3,000. 

1 2

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

1
2

3
4

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

The Gini Importance

F
re

q
u
e
n
c
y

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000

A
cc

u
ra

cy
 

The Number of Selected Experiments 

Crb. Enr.

Lpd. Ncl.

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000

A
cc

u
ra

cy
 

The Number of Selected Experiments 

Amn. Oth.

Gly. Vtm.

Crb. Enr. 

Lpd. Ncl. 

Amn. Oth. 

Gly. Vtm. 



 

34 

Proc. of the Second Intl. Conf. on Advances In Bio-Informatics, Bio-Technology and Environmental Engineering- ABBE 2014. 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-053-8 doi: 10.15224/ 978-1-63248-053-8-07 

 

4. Half of the Gini importances were less than 0.05 in four 
metabolic pathways: “carbohydrate metabolism”, “energy 
metabolism”, “metabolism of other amino acids” and “glycan 
biosynthesis and metabolism”. The number of unimportant 
experiments was the largest in “metabolism of other amino 
acids”: there were 1,200 experiments with the Gini 
importances that were less than 0.05. On the other hand, the 
number of unimportant experiments was the smallest in 
“amino acid metabolism”: there were 380 experiments with 
the Gini importances that were less than 0.05. 

The two types of accuracy were compared, as shown in 
Fig. 6: one is the accuracy calculated from only the expression 
vectors, and the other is the accuracy calculated from the 
expression vectors and interaction vectors. The accuracy of 
each metabolic pathway indicates the maximum value of the 
accuracies which were calculated in the case where we varied 
the number of selected experiments and interaction terms from 
10 to 1,000. The accuracy was improved in six metabolic 

pathways: “energy metabolism”, “lipid metabolism”, 
“nucleotide metabolism”, “amino acid metabolism”, 
“metabolism of other amino acids” and “metabolism of 
cofactors and vitamins”. On the other hand, the accuracy was 
not improved in “carbohydrate metabolism” and “glycan 
biosynthesis and metabolism”. In all metabolic pathways with 
improved accuracies, the highest accuracy was achieved when 
the threshold    was set to either 0.4 or 0.6. 

IV. Discussion 
Most experiments were not important for classification, 

since their Gini importances were less than 0.05, as shown in 
Fig. 1. The number of unimportant experiments was 
negatively correlated with the number of genes, because the 
correlation coefficient between them was -0.99. From this 
result, we found that the experiments were selected depending 
on the number of genes in the training data set, rather than the 
metabolic pathways. 

The accuracies decreased when unimportant experiments 
were added to the gene expression profiles, as shown in Fig. 2. 
This result suggests that the unimportant experiments caused 
overlearning of the SVM classifiers. The decrease in the 

 

Fig. 3. Comparison of accuracy against all experiments with that against 

selected experiments.  For each metabolic pathway, the highest accuracy in 
Fig. 2 is shown as the accuracy against selected experiments. 

TABLE 3. MAX VALUE OF SIMILARITY |    | 
 IN EACH METABOLIC PATHWAY 

Metabolic pathway 
Max Value       

     
 

Ideal Actual 

Carbohydrate metabolism 205 85 0.41 

Energy metabolism 103 46 0.45 

Lipid metabolism 116 46 0.40 

Nucleotide metabolism 116 46 0.40 

Amino acid metabolism 157 65 0.41 

Metabolism of other amino acids 49 38 0.78 

Glycan biosynthesis and metabolism 75 44 0.59 

Metabolism of cofactors and vitamins 107 44 0.41 

 

Fig. 4.  Histograms of |    | in the case where    was set to 0.0. The bin 

width was set to 5, which was selected as the majority of the widths 
suggested by Sturges' formula in each metabolic pathway. 
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accuracy was not correlated with the number of genes, because 
the correlation coefficient between them was -0.14. Thus, we 
considered that the overlearning was caused depending on the 
metabolic pathways, rather than on the number of genes in the 
training data set. Since the accuracies did not increase when 
we added experiments, except when the number of 

experiments was small, the Gini importance exactly expressed 
the importance of the experiment for classification. As shown 
in Fig. 3, the accuracies were improved in all of the metabolic 
pathways. Therefore, the feature selection by the Gini 
importance improved the classification performance of the 
SVM classifiers. 

The accuracies were enhanced by adding the interaction 
terms between experiments, as shown in Fig. 6. Since the 
highest accuracies were achieved when we set the threshold    
to either 0.4 or 0.6, the pair of interacting experiments can be 
found by focusing on only the genes that are significantly 
expressed. On the other hand, the accuracies got worse when 
we set the threshold    to a large value, such as 1.0. This result 
means that we cannot find the interacting experiment pair 
when we focus on too few genes. 

V. Conclusions 
We have proposed a new method based on the SVM 

approach, for inferring the genes involved in metabolic 
pathways from the gene expression profiles. To improve 
classification performances of SVMs, we developed a method 
for finding the important interactions for classification, from a 
huge number of experiment combinations. The interactions 
selected by our method were added as new features to the 
training data set of SVMs. 

We trained SVMs with the Saccharomyces cerevisiae gene 
expression profiles against eight metabolic pathways, and evaluated 
their classification performances. As a result, we achieved high 
performances in some metabolic pathways. Thus, our method is 

 

Fig. 5. Histograms of the Gini importances calculated from experiment 

vectors and interaction vectors in each metabolic pathway. The bin width 
was set to 0.05, which was selected as the majority of the widths suggested 

by Sturges' formula in each metabolic pathway. 

TABLE 4. THE NUMBER OF UNIMPORTANT 

EXPERIMENTS AND INTERACTIONS 

Metabolic pathway 
Gini importance 

< 0.05 0.05 ≤ 

Carbohydrate metabolism 383 1,117 

Energy metabolism 886 614 

Lipid metabolism 658 842 

Nucleotide metabolism 594 906 

Amino acid metabolism 411 1,089 

Metabolism of other amino acids 1,171 329 

Glycan biosynthesis and metabolism 1,057 443 

Metabolism of cofactors and vitamins 674 826 

 

Fig. 6. Comparison of the accuracy calculated from the experiment vectors 
with the accuracy calculated from the experiment vectors and interaction 

vectors. The accuracy of each metabolic pathway indicates the maximum 

value of the accuracies, calculated in the case where we varied the number 
of selected experiments and interaction terms from 10 to 1,000. 
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useful for inferring the relevant genes to metabolic pathways. 
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