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Shear Strength Degradation due to Flexural Ductility 

Demand in R.C. Elements. 
 

 
Abstract: A proposal is formulated that allows to evaluate the 

residual shear strength of reinforced concrete columns and 

beams for an assigned flexural ductility demand by limiting the 

range of the deviation angle between the inclinations of the yield 

 and the crack  lines. In order to take into account the 

degradation due to cyclic loads, the reduction of the range of the 

deviation angle is related to the value of cinematic ductility  

Keywords— shear strength, ductility, degradation, cyclic 

loads. 

I.  Introduction 
Modern approaches to structural analysis in seismic areas aim 
to evaluate the system’s capacity related to large inelastic 
displacement, i.e. corresponding to a large ductility demand. 
Unfortunately, the classical formulations for assessment of 
shear strength of reinforced concrete elements are independent 
of the deformation undergone, leading to overestimation of 
shear capacity when large ductility demand occurs. This issue 
assumes a key role when the seismic capacity of existing 
structures is evaluated by pushover analysis. 
Several studies [1,2] have suggested to solve these drawbacks 

on the basis of smeared cracking non-linear models [3-5]. 

However, despite their success in modeling several structural 

type behaviors, they do not appear suitable to handily provide 

relationships required for designers or to be implemented in 

software for seismic analysis of whole structure. 

In the proposed paper, it is observed that the models included 

in the present Eurocode for static action are derived by using 

the stress fields approach, and they render possible an ample 

variation of the angle  of inclination of the concrete stress 

field, which is, in general, different from the inclination  of 

the first cracking surface. When large deformation and cyclic 

actions of wide intensity occur, the progressive roughness 

reduction limits the range of variation of , preventing the 

development of directions of yielding lines with a slope 

different from the first cracking one, . 
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In this context a new proposal is formulated that allows to 

evaluate the residual shear strength of reinforced concrete 
(RC) beams, columns and bridge piers for an assigned flexural 
ductility demand by limiting the range of the deviation angle 
between the inclinations of the yield  and the crack line . In 
order to take into account the degradation due to cyclic load, 
the reduction of the range of the deviation angle is linked to 
the value of cinematic ductility 

 

II. Models for shear strength 

A. Classical model for cyclic actions 
In 1996, Priestley and Benzoni [6] developed a model to take 

into account the reduction in shear strength due to the ductility 

demand, which provides close agreement with tests on simple 

RC members. In this model the shear strength of a member is 

obtained as the sum of three different contributions due to 

transverse reinforcement, compressed concrete and axial load, 

respectively. Thus, in a rectangular cross-section the shear 

strength VRd can be evaluated as follows 
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where bw, d and x are the cross-section dimensions and the 

neutral axis depth; Aswt and sw the steel stirrup cross-section 

area and spacing, respectively; fck and fyk are the characteristic 

strength of the steel and compressed concrete; c and s the 

safety coefficients for concrete and steel, respectively; k() the 

strength degradation coefficient (Fig. 1),  the slope of the 

first cracking assumed equal to 30° in the columns and 45° in 

the beams, and Nsd the design axial force. The role of the terms 

Nsd tan  and more details on the model can be found in the 

papers [7,8]. 

B. Stress field model for static N-M-V 
force 

When RC elements are simultaneously loaded by axial force 

N, bending moment M and shear force V, the stress 

distribution in the cross-section is complex; thus an analytical 

model based on plastic theory [9-15] and able to predict the 

stress distribution cannot easily be derived. On the basis of the 

stress-field approach proposed by Bach et al. [16], Recupero et 

al. [17,18] proposed a model in which the tensile longitudinal 

reinforcement and the compressed chord are modeled by 

element with zero length, having geometrical shape depending  
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Figure 1.  Shear strength degradation coeffcient for beams and columns [6] 

  
a) 

b) 

Figure 2.  a) cross section; b) dimensionless shear  vs. bending moment m 
interation strength domain for different values of specific axial force n 

on the cross section shape. The model has been used for 

evaluation of M-N-V internal force interaction strength 

domain [8,17,18] as shown in non dimensional form in Fig. 2b 

for the rectangular section in Fig. 2a, made of concrete with 

characteristic concrete cylindrical strength fck=25 MPa and 

steel yielding strength fyk=450 MPa. The domain can be 

evaluated once the slopes andof the first cracking and the 

compressed concrete stress field respectively are calculated. In 

the following section it will be shown that a suitable reduction 

of the variation range of the compressed concrete stress field  

is able to reproduce the results of the classical truss model. 

III. Strength domain for Flexural 
Ductility demand 
A procedure that limiting the range of variation of the 

deviation  of the concrete stress field from the first cracking 

slope  (=) is shown, related to the geometrical and 

mechanical characteristic of the element and the amplitude of 

plastic deformation undergone under the effect of the seismic 

actions. The procedure enables the evaluation of the internal 

force interaction reduced strength domain under seismic 

actions. In the stress field model, the difference of the slope of 

the yield surface in comparison to that of the cracking surface 

is partly generated by the effects of aggregate interlock, which 

avoid slips along cracks, and is a function of the roughness of 

the crack sides in contact. When the maximum deformations 

and/or the accumulated damage due to small amplitude of 

cyclic actions increase, the roughness of the sliding surfaces is 

reduced. Thus, the range of the deviation angle  is limited. 

The proposed model assumes a limit value of the angle  that 

should depends on a measure of the damage generated by the 

combined effects of amplitude of maximum flexural ductility 

demand and cumulated effect of cyclic action, i.e. on a 

damage index that should include both the two aforementioned 

contributes. As an example, the Park and Ang index [19] 

appears to be a suitable damage index for governing the 

limitation of the deviation angle  
However here, due to the lack of adequate amount of 

experimental data for investigating the effect of cyclic action, 

the limit value of the deviation angle  is linked to the 

maximum value of the flexural ductility demand by 

reproducing the results of the Priestly and Benzoni model [6]. 

Firstly, aiming at stressing how such an assumption modifies 

the strength domains of RC members, the effects of the 

progressive reductions of the deviation angle  on N-M-V 

domains are shown for the section shown in Fig.1a, i.e. by 

setting the values of . The normalized strength domains 

are shown in Fig. 2b for four limit values: ctg  = 2.5 (22°), 

ctg  = 2 (  26), ctg  = 1.5 (  34) and ctg  = 1 ( = 45) 

and for four normalized axial force values n = Nsd/(fck Ac) = 0, 

0.25, 0.50 and 0.75. Figs. 3 show that the progressive 

reduction in the yield surface inclination (angle ) causes a 

major reduction in the maximum shear strength; by contrast, it 

does not have any influence on the ultimate bending moment. 

The domains show also that for large values of the axial force, 

the reduction of the shear strength is large for small values of 

the bending moment and any value of the stress field 

inclination also. In order to characterize the relation between 

angular deviation  and flexural ductility demand on the basis 

of the indications provided by Priestley and Benzoni [6], it is 

observed that the limit of the yield surface inclination 

influences the horizontal line of the strength domain 

corresponding to small values of the bending moment, for 

which the failure of the structural element is reached by 

attainment of shear strength, that in non dimensional and 

dimensional form read respectively: 
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Figure 3.  Interation strength domain as function of the compressed concrete 

stress field slopeand different axial force values 
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where fck2 is the concrete compressive strength reduced for the 

presence of transversal stress Eq. 3 represents the shear 

strength related to the capacityof the tranversal reinforcement. 

The shear stress  and the mechanical ratio of transverse 

reinforcement w read: 
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where z3 is the depth of the cross section part that have to 

carries the shear stress [17,18.] 

Taking into account that, when the shear capacity are 

evaluated for a stubby column by the stress field approach, the 

arch action [Nsd tan  must be added also in Eq.3, Eq. (6) is 

able to reproduce the shear strength degradation predicted by 

Eq. (1) if the degradition is assmed to be due to the limitation 

of the deviation angle , i.e. [cotg ]max. limitation. In order to 

achieve this results, Eq.(1) and Eq.(3) are matched, as follows: 
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where the dependence of the value of the slope of the 
compressed concrete stress filed on the value of the curvature 
ductility demand  is emphasized, and the circumstance that 
the maximun shear strength is obtained when the maximun 
value of [cotg] is chosen, has been retained. The non-
dimensional form of Eq. (6) is  

 3

max
2

( )            
ck

w w

ck

fz
ctg ctg k

z f


By setting  

3 
z

z


2

 
ck

ck

f

f


Eq. (7) is rewritten in the following form 
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by which the value of the corresponding angle  can be easily 
derived. 
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Eq. (11) can be used either for columns or for beams, i.e. for 
element with or without axial force.  When columns are 
considered, the degradation coefficient of shear strength 

provided by the concrete k() depicted in Fig. 1 are 
considered. It was derived by Priestley and Benzoni [6] by 
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regression of experimental risults, assuming  = 30° 

(cot  = 1.732) and z=0.9 d = 0.9 (H-c). In order to solve 
Eq. (9) the hypothesis that shear collapse occurs when axial 
force and bending moment action on the section are able to 
yield the longitudinal reinforcement at the compression and 
tension chords are assumed. Thus, the axial force is carried on 
by the compressed concrete only, and the dimensionless  
neutral axis depth is 
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The depth z3 of the cross section part that have to carry the 
shear stress [17,18] is evaluated as: 
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where c is the cover. The nondimensional form of Eq.(13) 
reads 
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If the value of non dimensional cover is assumed c/H=0.05, 
the non dimensional form of the section depth charged to carry 
the shear action is  
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Substitution of  Eq.(15) in Eq.(11) provvides:  
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The range of validity of Eq.(16) is restricted the value of non 
dimensional axial force n≤0.9, that comprises almost all the 
cases of design of structure in seismica area, where n≤0.65 is 
suggested by the code.  

When beams are considered, in Eq. (11)  = 45° (ctg   =  1),  

0.9 0.9 ( )    z d H c and the curve of kthat pertain to 

the beams in Figure 1 are assumed. Thus, when significative 
amount of longitudinal reinforcement are placed at the 
compressed chord, the following expression of non 
dimensional cross section depth z3/z carrying the shear stress  
is obtained: 

 
 

3
1 4

1 4
0.9 1


  

      
   

c
z H c H

cz z H
H



By assuming c/H=0.06, substitution of Eq.(17) in Eq.(11) 
provvides: 
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IV. Numerical analysis 
Some numerical analyses were carried out, in order to show 
how different geometrical and mechanical parameters and 
ductility demands can reduce the range of variability of the 
inclination of the stress fields of compressed concrete. In 

Fig. 4 the range of the minimum slope   for concrete 

columns with a C25/30 concrete subjected to non dimensional 
axial force n=0.2 is depicted versus the mechanical ratio of 

transverse reinforcement w for different values of the flexural 

ductility demand . For gravity loads, corresponding to 

ductility demand value .=1, the minimum slope of concrete 

stress field is comprised in the range 16.92° <   <23° 

(3.29> ctg >2.35) when 0.1 < w < 0.5. Thus, the angular 

deviation  with respect to the first cracking slope =30° 

assumed in [6] is comprised in the range 7° <  < 13.1. A 
wider deviation is required for small mechanical ratios of 
stirrups. In the presence of low stirrup density, the maximum 
values of shear are attained when the inclination of the stress 
fields is reduced in order to allow a larger number of stirrup 
legs to cross into the yield line, where the equilibrium is 
imposed. With the increases in the required ductility, the range 

of   is reduced; for  15 and for the different values of 

themechanical percentage of stirrups the range 

23.03° <   < 24.8° (2.32 > [ctgmax > 2.16) was found to be 

admissible. Thus, large ductility demand strongly penalizes 
the shear strength of elements with a small amount of stirrups, 
while the reduction is small for members with a large  

 

Figure 4.  Columns (n=0.2):  Slope vs. trensversal reinforcement 

mechanical ratio for different values of flexural ductility demand 
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Figure 5.   Beams (n=0.2):  Slope vs. trensversal reinforcement mechanical 

ratio for different values of flexural ductility demand 

mechanical ratio of transversal reinforcement A similar 
numerical analysis is performed for beams made of the same 
C25/30 concrete. The curve in Fig. 5 show the variation of the 

minimum compressed field slope  in the same range of 

transversal reinforcement mechanical ratio used for column 

analysis, i.e. 0.1 < w < 0.5. As the results of the shape of the 

curve of k() in Fig. 1 for the beams, constant values of for 

 > 7 are obtained. The curves show that the slope of concrete 

stress field for static action ( ≤ 1) is comprised in the range 

(27.3° <   <38.1)° (1.93> ctg >1.27). Taking into account 

that for the beam first cracking slope =45° was assumed, the 

deviation angles  are comprised in the range 6.9°>  >17.7°, 
they are highly dependent on the values of the transversal 

reinforcement ratio w. When the ductility demand increases, 

a sharp increment of the  slope is required, that for  values 

of 7 or larger, reduces the  range as 37.2° <   < 41°, and 

the stress field slope approaches the first cracking slope, i.e. 

=45° (ctg1). This limitation produce a noticeable 
reduction of the strength domain (Fig. 3a), proving that in the 
beams a large ductility demand produces a large reduction of 
the shear strength. By comparison of Fig. 4 and Fig. 5 the 
larger reduction of shear capacity in the beams (having a first 

cracking slope =45°) with respect to that of the column 

(=30°) can be recognized.  

V. Conclusions 
A modification of a stress field model for the prediction of 
shear strength degradation in reinforced concrete elements 
when large flexural ductility demand are required, is proposed. 
The model enables the evaluation of the internal force 
interaction domain, which amplitude is reduced by a limitation 
of the angle deviation of the concrete stress field form the 
angle of first cracking.  The limitation of the deviation as a 
function of the flexural ductility demand is here derived from 
the model of  Priestly and Benzoni [6]. Further investigation 
are required to link the deviation angle limitation to damage 
index in order to take into account the effects of cyclic action 
due to seismic excitation. 
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