

53

Proc. of the Second Intl. Conf. on Advances in Applied Science and Environmental Engineering - ASEE 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-033-0 doi: 10.15224/ 978-1-63248-033-0-13

1

A Data Layout strategy to Enhance the Internal SSD Parallelism

Soraya Zertal
1

1
PRiSM, University of Versailles, 45 Av. des Etats-Unis, 78000 Versailles, France

Abstract—Solid State Disks (SSDs) are promising
data storage devices in term of performance and
energy consumption comparing to Hard Drive Disks
(HDDs). They are more and more used, even in data-
intensive applications where hard constraints are put
on throughtput and response time. Accessing data in
parallel becomes capital to satisfy these performance
requirements. The SSD internal structure provides
a potential for parallel access at different levels, up
to its dies and planes. However, this parallel access
relies completely on the data layout. In this paper, a
data placement algorithm is presented. It distributes
data across the SSD components and maintains this
layout after write operations. This makes the parallel
requests execution possible at the lowest levels. The
impact of this data layout on the reduction of the
waiting time is evaluated and the obtained results
show a significant gain for OLTP and scientific
applications up to a factor of 10.

Index Terms—SSD, Parallel I/O, Data layout, Wait-
ing time, OLTP and scientific workloads, Simulation.

I. INTRODUCTION

NAND-Flash Memories and Solid State Disks

(SSDs) enregistred a substansial and continous in-

creasing use. It exceeds the limits of mobile de-

vices, personnal and enterprise machines. Recently,

data centers incorporated SSDs into their storage

systems and made them a target storage media

for data-intensive applications. This use will be

strengthened in the near future with the increasing

storage capacity and the reducing cost of SSDs.

After a long exclusive use of HDD, hybrid systems

or SSDs as an intermediate storage to accelerate the

access to special data [17], data-intensive applica-

tions start to consider whole SSD storage systems.

An intensive work had been achieved to model

and optimize the Inputs/Outputs execution on

HDDs [12, 18, 21, 20, 16, 22, 23]. However,

switching to SSDs, makes these optimizations in-

appropriate because the former has a moving part

which is inexistant on the second one. Thus, SSDs

have a certain advantage in term of performance

as all mechanical delays are eliminated as well as

their associated access strategies as ―buffering I/O

requests to execute them in sequence on HDDs for a

reduced seek time‖ [5]. With their unique property

of internal parallelism, SSDs allow their different

components (packages, dies and planes) to process

I/O requests in parallel and improve significantly

the delivered performance.

components (packages, dies and planes) to process

I/O requests in parallel and improve significantly

the delivered performance.

However, this property is poorly investigated and

exploited at this stage and only few works were

achieved in this direction [14, 4]. The internal SSD

parallelism matches with the natural concurrency

present in data-intensive applications resulting from

a concurrent calculation. It helps to fulfil the per-

formance requirements in term of response time

and delivered throughput and overcomes the poor

random write performance. This property cannot be

exploited, neither its gain reached, if the data layout

does not garantee an optimal distribution across the

SSDs internal components. In this paper, we present

a strategy for the initial data distribution, then its

conservation during write operations execution as

reads have no impact on the data layout.

This paper addresses these issues, using simulation

to show that the proposed data layout strategy

allows and enhance the exploitation of the inter-

nal SSDs parallelism and makes it a challenging

option for data-intensive applications as OLTP and

scientifc applications.

II. BACKGROUND AND RELATED WORKS

A. Flash memory and SSD background

SSDs are storage devices based on NAND-Flash

memory. There are two types: Single Level Cell

(SLC) storing one bit per memory cell and Multiple

Level Cell (MLC) storing many bits per memory

cell. The M LCn technology multiplies the storage

capacity by having n-bits per cell, where n=2,3 or

4. The higher is n, the higher is the capacity but

the lower is the reliability and the performance. The

basic structure unit of a NAND-Flash is the page

and it is the access unit of read and write operations.

As shown on fig. 1, every page is composed of a

large field for user data and a small one (spare)

for metadata [1]. A fixed number of pages are

gathered to form a block which is the unit of

erase operations. Blocks are organized into planes

to compose a Flash chip or die (see fig. 2). Finally,

an SSD is an array of Flash packages, connected

through channels. Every package is composed of

one or many dies (see fig. 3).

54

Proc. of the Second Intl. Conf. on Advances in Applied Science and Environmental Engineering - ASEE 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-033-0 doi: 10.15224/ 978-1-63248-033-0-13

Several specific characteristics make the Flash

memory different from other classical storage de-

vices. First, a big disparity between the execution

time of read, write and erase operations. Second,

the No-In-Place update, leads to write the new

version on a valid (free) page, then invalidate the

page containing the old version. Third, the erase

before write constraint, requiring the erase of a

location before writing a new data in it. A garbage

collector is run periodically to write valid pages in

target blocks and erase the blocks with only invalid

pages to make free room for future writes. Last,

the limited number of erase cycles makes the wear

leveling a critical task.

Data area Spare area

 .

.

One page

One Block

Fig. 1. A NAND Flash block structure

Fig. 2. A Die structure

Fig. 3. A Solid State Drive structure

B. Related works

The deployment of SSDs in different environ-

ments raised up an intensive research work, propos-

ing: (1) mapping and data placement strategies [19,

ing: (1) mapping and data placement strategies [19,

8, 1] to determine when it is more efficient to

adopt a page mapping rather than a block one

or a mixture of both with respect to metadata

size and performance; (2) caching policies [15]

to deal with the disparity between the operations

latencies and consider not only hit count as usual

for ‖classical‖ memory devices but also the re-

placement cost caused by selecting dirty victims

as its calculation is different for Flash in terms

of time and energy; (3) wear leveling [3, 13] and

(4) garbage collection [11, 10] to handle the No-

In-Place updates, the erase-before-write and the

limited number of erase cycles, in order to preserve

the longevity of the device, and (5) simulation

and evaluation tools [7, 2, 9]. In addition, several

file systems have been developed to manage data

on Flash memories as: JFFS2 (Journal Flash File

System) and its successor UBIFS (Unsorted Block

Image File System), YAFFS (Yet Another Flash

File System) and its second version (YAFFS 2)

and more recently, LogFS (Log Flasf File System)

and F2FS (Flash-Friendly File System) and finally

PFFS for hybrid Flash/RAM architectures.

Few works dedicated to SSDs, were achieved on

its internal parallelism. Park et al. [14] studied

the behaviour of the SSD submitted to parallel

scientific I/O workloads using the completion time.

Comparing to the HDD, the obtained gain is modest

due to the high proportion of writes. The data

layout changes after every SSD write and decreases

dramatically the use of parallel execution. Chen et

al. [4] studied more precisely the impact of the

channel level parallelism on the performance of the

execution queries in database systems. Their results

are significant as the speed up of a join plan (read

operations only), is 5.

III. DATA LAYOUT FOR INTERNAL SSD

PARALLELISM

From both studies [14, 4], one can deduce that :

1) Parallel access to the SSD can provide a

substantial performance improvement but it

relies completely on the physical data layout

2) Read operations have no impact on the par-

allel execution

3) Write operations change the data layout and

prevent this parallel access.

Consequently,
Initially, data must be perfectly distributed across
the concurrent components of the SSD, up to the
lowest levels (dies and planes) with the page as a
unit. This data layout should be protected against
write operations. When a write operation occurs,
the page holding the old data is invalidated and
an other page is chosen to hold the new version.
The location of this page is capital for keeping the

55

Proc. of the Second Intl. Conf. on Advances in Applied Science and Environmental Engineering - ASEE 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-033-0 doi: 10.15224/ 978-1-63248-033-0-13

TABLE I

I/O PAT T E R N A N D RD/WR R AT I O F O R SC I E N T I FI C

WO R K L OA D S [14]

distribution of data as optimal as in the initial lay-
out. It is determined using our proposed algorithm
DL algo below:

1/ If a free page exists on the
plane and the GC_indicator is
lower than a certain threshold,
this page is chosen, END

2/ If the condition (1) cannot be

satisfied, select another plane
not checked yet, in the same die
and go to (1), otherwise (3)

3/ If all the planes of the die

cannot provide a free page,
choose the one with the
highest GC_indicator, force
a garbage collection,go to (1).

IV. EVALUATION

First, the evaluation methodology is presented

including the workloads generation and the simula-

tion process, then the conducted tests are detailed.

A. Methodology

a) Workload generation: the OLTP workloads

are generated according to the specific character-

istics captured from an OLTP real trace [6]. It

is composed of 67% of reads against 33% of

writes. Operations are of one page (4KB) each,

randomly distributed and coming at a rate of 1600

req/s. Scientific Workloads are generated using the

characteristics captured in [14] from five real traces

generated by real applications, called here S trace 1

to 5. Table I summarizes the scientific I/O patterns

and their read/write ratios. For the requests size

distributions, all the granularities going from 1KB

to 2MB are included with different percentages.

b) The simulated hardware: As the focus is

on the internal structure of the SSD, only one was

considered, with multiple dies and multiple planes

within each die to provide such internal parallel

access. Details are on table II.

B. Tests

Simulations were conducted using our algorithm

DL algo and compared to a random allocation

TABLE II

TABLE II
TH E SSD H A R DWA R E C H A R AC T E R I S T I C S

policy. These tests were performed for the two

parallelism degrees (1: interDies parallelism, 2:

interPlanes parallelism) and no-parallelism as a

reference (degree 0).

A set of tools were developed: a generator

to produce the workloads and an event-driven

simulator in C dedicated to the I/O requests

execution. It implements all the possible parallel

execution schemes and handles all the related

synchronisation mechanisms associated with the

three parallelism degrees (0, 1 and 2). It implements

both the DL algo allocation algorithm and the

random one for comparison.

The parallel execution subdivides user requests into

physical ones and distributes them across the dies,

then the planes. Thus, the system is absolutely

invariant whatever user requests are sequential or

random. Also, it is considered under permanent

use. So, time to mount metadata or to gather

physical requests responses is not considered.

The focus is put here on the performance in term

of response time, mainly composed of waiting and

access time. This one is fixed on SSDs with respect

to the operation type. For degree 0, the whole SSD

package is seen as a unit and no other request is

processed if the previous one is not completed.

For degree 1, the dies can operate independently

from each others and requests on different dies

can be executed in the same time. For degree 2,

not only dies can operate independently but also

the planes within each die. It results in a highly

parallel execution.

The simulation of every case is run for 250K

user requests with 25% to reach the permanent

state. The initial mapping and allocation algorithms

spread widely data on the SSD components to allow

the parallel access. the proposed DL algo keeps

this data layout whilst a random allocation choose

a random block for the valid page to hold the

new version. Thus, the spatial locality is broken

without any impact as the pattern layout (seq/rand)

is useless with SSD internal parallelism.

Trace RD/WR ratio I/O pattern
RD WR

S trace 1 0.51/0.49 Seq. Seq.
S trace 2 0.50/0.50 Seq. Seq.
S trace 3 0.14/0.86 Rand. Rand.
S trace 4 0.67/0.33 Rand. Rand.
S trace 5 0.00/1.00 Rand. Rand.

Parameter Value
Packages per SSD 1
Dies per package 16

Planes per die 2
Blocks per die 4092

Pages per block 64
Block size 256 KB
Page size 4 KB

Erase duration 1.5 ms
Read duration 130 µs
Write duration 305 µs

56

Proc. of the Second Intl. Conf. on Advances in Applied Science and Environmental Engineering - ASEE 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-033-0 doi: 10.15224/ 978-1-63248-033-0-13

V. RESULTS AND DISCUSSION

A. A parallelism oriented data layout strategy

A serie of simulations using OLTP and scientific

workloads was performed to analyse the impact of

the proposed data allocation algorithm (DL algo)

and compares it to the random one.

In case of no parallelism (degree 0), no change

is observed which was expected because no par-

allelism is performed and only one request is exe-

cuted in the whole package at once. The choice of

the target page location for a write request has no

impact then. The most important result, is that the

DLalgo allocation algorithm does not introduce any

delays and it is usefull only if a parallel execution

is possible.

B. A parallelism oriented data layout strategy and

interDies concurrent execution

In this case, Dies can operate in parallel, exe-

cuting an I/O request each in the same time. The

results are shown on figures 4 and 5 for OLTP and

scientific workloads (write) respectively.

Fig. 4. Data layout Vs Random for OLTP workload

Fig. 5. Data layout Vs Random (degree 1) for scientific
workloads

We can see for OLTP (fig. 4) that the waiting

time for reads is the same for all data allocation

strategies. This is not the case for the writes as

the waiting time is significantly reduced using

DL algo. For scientific workloads (fig. 5), the

waiting time is significantly reduced for the five

traces even for the full write S trace5.

C. A parallelism oriented data layout strategy and

the interPlanes concurrent execution

C. A parallelism oriented data layout strategy and

the interPlanes concurrent execution

The interPlanes parallelism is the extreme level

to achieve parallel access. Thus, its exploitation can

reduce drastically the waiting time. The hardware

used in this study has two planes for each die: one

plane composed of the odd blocks and the second

plane composed of the even ones. The obtained

results are shown on figures 4 and 6 for OLTP and

scientific workloads (write) respectively.

Fig. 6. Data layout Vs Random (degree 2) for scientific
workloads

From both figures, we can see that the interPlanes

parallelism reduce drasticaly the waiting time up

to ×10. Both DL algo and random allocation

stratrgies allow this reduction with an advantage for

DL algo especially for long term execution when

the data layout changes due to write operations

make the parallel access hard to achieve.

VI. CONCLUSION

In this paper, a data layout algorithm DL algo

was proposed to enhance the exploitation of the

SSD internal parallelism. Its impact was analysed

at a fine grain parallelism: up to the planes level for

data intensive applications such as OLTP and sci-

entific applications using traces-based workloads.

The results of the conducted simulations show a

significant reduction factors for the waiting time,

up to x10. The proposed DL algo allows and

enhance the parallel access to the lowest level of

the SSD internal components. It is more performant

comparing to the random algorithm at long term.

For the near future, considering the interPack-

ages/interChannels parallelism will complete our

study. Also, considering both external and internal

parallelism in an SSD array will be a step forward

to efficient large SSD-based storage systems for

data-intensive applications.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.

Davis, M. Manasse, Mark, and R. Panigrahy.

Design tradeoffs for ssd performance. In

USENIX 2008 Annual Technical Conference

57

Proc. of the Second Intl. Conf. on Advances in Applied Science and Environmental Engineering - ASEE 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-033-0 doi: 10.15224/ 978-1-63248-033-0-13

on Annual Technical Conference, pages 57–

70, 2008.

[2] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger. The disksim simulation envi- ronment

version 4.0 reference manual cmu- pdl-08-101), 2008.

[3] L. P. Chang. On efficient wear leveling for large for large-scale flash memory storage systems. In

ACM Symposium on Applied Computing, pages 1126–1130, 2007.

[4] F. Chen, R. Lee, and X. Zhang. Essantiel roles of exploiting internal parallelism of flash memory

based solid state drives in high- speed data processing. In IEEE Symposium on High Performance

Computer Architecture, pages 266–277, 2011.

[5] G. Graefe. the five-minute rule 20 years later and how flash memory chenges the rules. Queue,

6(4), 2008.

[6] P. G. Harrison, S. K. Harrison, N. M. Patel, and S. Zertal. Storage workload modeling by hidden

markov models: Application to flash memory. Performance Evaluation Journal (PEVA), 69(1), 2012.

[7] Y. Hu, H. Jiang, D. Feng, Dan, L. Tian, H. Luo, and S. Zhang. Performance im- pact and

interplay of ssd parallelism through advanced commands, allocation strategy and data granularity. In

Proceedings of the In- ternational Conference on Supercomputing, pages 96–107, 2011.

[8] Y. Hu, H. Jiang, D. Feng, L. Tian, S. Zhang, J. Liu, W. Tong, Y. Qin, and L. Wang. Achiev- ing page-

mapping ftl performance at block- mapping ftl cost by hiding address translation, 2010.

[9] K. Y. Kim, B. Tauras, A. Gupta, and B. Ur- gaonkar. Flashsim: A simulator for nand flash- based solid-

state drives. In First International Conference on Advances in System Simula- tion, 2009. SIMUL

’09, pages 125–131, 2009.

[10] Y. Kim, S. Oral, G. Shipman, J. Lee, D. Dil- low, and F. Wang. Haormonia: A globally coordinated

garbage collector for arrays of solid-state drives. In IEEE Symposium on Mass Storage Systems,

pages 1–12, 2011.

[11] J. Lee, Y. Kim, G. Shipman, S. Oral, F. Wang, and J. Kim. A semi-preemptive garbage collector for

solid state drives. In IEEE Sym- posium on Performance Analysis of Systems and Software, pages

12–21, 2011.

[12] K. Maruchi, S. Takakura, M. Yoshida, T. Ak- iba, and H. Nakamura. Hard disk drive and command

execution method, 2009. US Patent

7,477,477.

58

Proc. of the Second Intl. Conf. on Advances in Applied Science and Environmental Engineering - ASEE 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-033-0 doi: 10.15224/ 978-1-63248-033-0-13

[13] M. Murugan and D. Du. Rejuvenator: A static wear leveling algorithm for nand flash memory with

minimal overhead. In IEEE conference on MAss Storage Systems and Technologies: Research Track,

2011.

[13] M. Murugan and D. Du. Rejuvenator: A static wear leveling algorithm for nand flash memory with

minimal overhead. In IEEE conference on MAss Storage Systems and Technologies: Research Track,

2011.

[14] S. Park and K. Shen. A performance eval- uation of scientific i/o workloads on flash- based ssds.

In Workshop on the Interfaces for Scientific Data Storage, 2009.

[15] S. Y. Park, D. Jung, J. U. Kang, J. S. Kim, and J. Lee. Cflru: a replacement algorithm for flash

memory. In International conference on Compilers, architecture and synthesis for embedded systems,

pages 234–241, 2006.

[16] Sangsoo Park and Heonshik Shin. Rigourous Modeling of Disk Performance for Real-Time

Applications, volume 2986. Springer Berlin,

2004.

[17] H. Payer, M. A. A. Sanvido, Z. Z. Bandic, and C. M. Kirsch. Combo drive: Optimizing cost and

performance in a heterogeneous storage device. In First Workshop on Integrating Solid-state

Memory into the Storage Hierar- chy, volume 1, pages 1–8, 2009.

[18] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. 27(3):17–28, 1994.

[19] Y. K. Suh, B. Moon, A. Efrat, J. S. Kim, and S. W. Lee. Extent mapping scheme for flash memory

devices. In MASCOTS, pages 331–

338. IEEE Computer Society, 2012.

[20] P. Triantafillou, S. Christodoulakis, and C. A.

Georgiadis. A Comprehensive Analytical Performance Model for Disk Devices Un- der Random

Workloads. IEEE Transactions on Knowledge and data Engineering, 14(1),

2002.

[21] Y. Wang, K. Davis, X. Yuehai, and S. Jiang. iharmonizer: Improving the disk efficiency of i/o-intensive

multithreaded codes. In Par- allel and Distributed Processing Symposium (IPDPS), pages 921–

932, 2012.

[22] S. Zertal and P. G. Harrison. Multi-raid queue- ing model with zoned disks. In High Perfor- mance

Computing and Simulation, 2007.

[23] S. Zertal and P. G. Harrison. Non-linear seek distance for optimal accuracy of zoned disks seek time in

multi-raid storage systems. In High Performance Computing and Simulation,

2008.

