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Abstract—Solid  State  Disks  (SSDs) are  promising 
data   storage   devices  in  term   of  performance and 
energy  consumption comparing  to Hard  Drive Disks 
(HDDs). They are more and more used, even in data- 
intensive applications  where hard  constraints are put 
on throughtput and  response time. Accessing data  in 
parallel  becomes capital  to satisfy these performance 
requirements.  The  SSD  internal   structure provides 
a potential  for  parallel  access at  different  levels, up 
to its dies and  planes.  However,  this  parallel  access 
relies completely  on the data  layout.  In this paper,  a 
data  placement  algorithm is presented.  It distributes 
data  across  the  SSD components  and  maintains this 
layout after  write operations. This makes the parallel 
requests execution  possible  at  the  lowest levels. The 
impact  of this  data  layout  on  the  reduction of the 
waiting  time  is  evaluated   and  the  obtained   results 
show a significant gain for OLTP and scientific 
applications  up to a factor  of 10. 

 

Index Terms—SSD, Parallel  I/O, Data layout, Wait- 
ing time, OLTP  and scientific workloads,  Simulation. 

 
 
 

I.  INTRODUCTION 

 

NAND-Flash Memories and Solid State Disks 

(SSDs) enregistred a substansial and continous in- 

creasing use. It exceeds the limits of mobile de- 

vices, personnal and enterprise machines. Recently, 

data centers incorporated SSDs into their storage 

systems  and  made  them  a  target  storage  media 

for  data-intensive applications.  This  use  will  be 

strengthened in the near future with the increasing 

storage capacity and the reducing cost of SSDs. 

After a long exclusive use of HDD, hybrid systems 

or SSDs as an intermediate storage to accelerate the 

access to special data [17], data-intensive applica- 

tions start to consider whole SSD storage systems. 

An intensive work had been achieved to model 

and  optimize  the  Inputs/Outputs  execution  on 

HDDs [12, 18, 21, 20, 16, 22, 23]. However, 

switching to SSDs, makes these optimizations in- 

appropriate because the former has a moving part 

which is inexistant on the second one. Thus, SSDs 

have a certain advantage in term of performance 

as all mechanical delays are eliminated as well as 

their associated access strategies as ―buffering I/O 

requests to execute them in sequence on HDDs for a 

reduced seek time‖ [5]. With their unique property 

of internal parallelism, SSDs allow their different

components (packages, dies and planes) to process 

I/O requests in parallel and improve significantly 

the delivered performance. 

components (packages, dies and planes) to process 

I/O requests in parallel and improve significantly 

the delivered performance. 

However, this property is poorly investigated and 

exploited at this stage and only few works were 

achieved in this direction [14, 4]. The internal SSD 

parallelism matches with the natural concurrency 

present in data-intensive applications resulting from 

a concurrent calculation. It helps to fulfil the per- 

formance requirements in term of response time 

and delivered throughput and overcomes the poor 

random write performance. This property cannot be 

exploited, neither its gain reached, if the data layout 

does not garantee an optimal distribution across the 

SSDs internal components. In this paper, we present 

a strategy for the initial data distribution, then its 

conservation during write operations execution as 

reads have no impact on the data layout. 

This paper addresses these issues, using simulation 

to show that the proposed data layout strategy 

allows and enhance the exploitation of the inter- 

nal SSDs parallelism and makes it a challenging 

option for data-intensive applications as OLTP and 

scientifc applications. 

 

 
II.  BACKGROUND AND RELATED WORKS 

A. Flash memory and SSD background 

SSDs are storage devices based on NAND-Flash 

memory. There are two types: Single Level Cell 

(SLC) storing one bit per memory cell and Multiple 

Level Cell (MLC) storing many bits per memory 

cell. The M LCn technology multiplies the storage 

capacity by having n-bits per cell, where n=2,3 or 

4. The higher is n, the higher is the capacity but 

the lower is the reliability and the performance. The 

basic structure unit of a NAND-Flash is the page 

and it is the access unit of read and write operations. 

As shown on fig. 1, every page is composed of a 

large field for user data and a small one (spare) 

for  metadata  [1].  A  fixed number  of  pages  are 

gathered  to  form  a  block  which  is  the  unit  of 

erase operations. Blocks are organized into planes 

to compose a Flash chip or die (see fig. 2). Finally, 

an SSD is an array of Flash packages, connected 

through channels. Every package is composed of 

one or many dies (see fig. 3).
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Several specific characteristics make the Flash 

memory different from other classical storage de- 

vices. First, a big disparity between the execution 

time of read, write and erase operations. Second, 

the No-In-Place update, leads to write the new 

version on a valid (free) page, then invalidate the 

page containing the old version. Third, the erase 

before  write  constraint, requiring the  erase  of  a 

location before writing a new data in it. A garbage 

collector is run periodically to write valid pages in 

target blocks and erase the blocks with only invalid 

pages to make free room for future writes. Last, 

the limited number of erase cycles makes the wear 

leveling a critical task. 
 

Data area          Spare area 
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One page 

 
 

 
One Block 

 
Fig. 1.  A NAND Flash block structure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  A Die structure 
 

 

 
 

Fig. 3.  A Solid State Drive structure 
 

 
B. Related works 

The deployment of SSDs in different environ- 

ments raised up an intensive research work, propos-

ing: (1) mapping and data placement strategies [19, 

ing: (1) mapping and data placement strategies [19, 

8,  1]  to  determine  when  it  is  more  efficient to 

adopt  a  page  mapping  rather  than  a  block  one 

or  a  mixture  of  both  with  respect  to  metadata 

size  and  performance;  (2)  caching  policies  [15] 

to deal with the disparity between the operations 

latencies and consider not only hit count as usual 

for ‖classical‖ memory devices but also the re- 

placement cost caused by selecting dirty victims 

as  its  calculation is  different for  Flash in  terms 

of time and energy; (3) wear leveling [3, 13] and 

(4) garbage collection [11, 10] to handle the No- 

In-Place updates, the erase-before-write and the 

limited number of erase cycles, in order to preserve 

the  longevity  of  the  device,  and  (5)  simulation 

and evaluation tools [7, 2, 9]. In addition, several 

file systems have been developed to manage data 

on Flash memories as: JFFS2 (Journal Flash File 

System) and its successor UBIFS (Unsorted Block 

Image File System), YAFFS (Yet Another Flash 

File  System) and  its  second version (YAFFS 2) 

and more recently, LogFS (Log Flasf File System) 

and F2FS (Flash-Friendly File System) and finally 

PFFS for hybrid Flash/RAM architectures. 

Few works dedicated to SSDs, were achieved on 

its  internal  parallelism.  Park  et  al.  [14]  studied 

the behaviour of the SSD submitted to parallel 

scientific I/O workloads using the completion time. 

Comparing to the HDD, the obtained gain is modest 

due  to  the  high  proportion  of  writes.  The  data 

layout changes after every SSD write and decreases 

dramatically the use of parallel execution. Chen et 

al.  [4] studied more precisely the impact of  the 

channel level parallelism on the performance of the 

execution queries in database systems. Their results 

are significant as the speed up of a join plan (read 

operations only), is 5. 
 

III.  DATA LAYOUT FOR INTERNAL SSD 

PARALLELISM 

From both studies [14, 4], one can deduce that : 

1) Parallel access to the SSD can provide a 

substantial performance improvement but it 

relies completely on the physical data layout 

2)  Read operations have no impact on the par- 

allel execution 

3)  Write operations change the data layout and 

prevent this parallel access. 

Consequently, 
Initially, data must be perfectly distributed across 
the concurrent components of the SSD, up to the 
lowest levels (dies and planes) with the page as a 
unit. This data layout should be protected against 
write operations. When a write operation occurs, 
the page holding the old data is invalidated and 
an other page is chosen to hold the new version. 
The location of this page is capital for keeping the
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TABLE I 

I/O PAT T E R N A N D RD/WR R AT I O F O R SC I E N T I FI C 

WO R K L OA D S [14]

 

 
distribution of data as optimal as in the initial lay- 
out. It is determined using our proposed algorithm 
DL  algo below: 

 

1/ If  a free page exists  on   the 
plane  and the  GC_indicator is 
lower than a certain threshold, 
this  page is  chosen, END 

 
2/ If  the condition (1) cannot be 

satisfied, select another plane 
not  checked yet, in the same  die 
and go   to (1),  otherwise (3) 

 
3/ If all  the planes of the die 

cannot provide a free  page, 
choose the  one with the 
highest  GC_indicator, force 
a garbage collection,go  to (1). 

 
IV.  EVALUATION 

First, the evaluation methodology is  presented 

including the workloads generation and the simula- 

tion process, then the conducted tests are detailed. 
 

A. Methodology 

a)  Workload generation:  the OLTP workloads 

are generated according to the specific character- 

istics  captured  from  an  OLTP  real  trace  [6].  It 

is  composed  of  67%  of  reads  against  33%  of 

writes. Operations are  of  one  page  (4KB) each, 

randomly distributed and coming at a rate of 1600 

req/s. Scientific Workloads are generated using the 

characteristics captured in [14] from five real traces 

generated by real applications, called here S trace 1 

to 5. Table I summarizes the scientific I/O patterns 

and their read/write ratios. For the requests size 

distributions, all the granularities going from 1KB 

to 2MB are included with different percentages. 

b) The simulated hardware:    As the focus is 

on the internal structure of the SSD, only one was 

considered, with multiple dies and multiple planes 

within each die to provide such internal parallel 

access. Details are on table II. 
 

B. Tests 

Simulations were conducted using our algorithm 

DL  algo  and  compared  to  a  random  allocation

TABLE II 

TABLE II 
TH E SSD H A R DWA R E C H A R AC T E R I S T I C S 

 
 

 
policy. These tests were performed for the two 

parallelism degrees (1: interDies parallelism, 2: 

interPlanes parallelism) and no-parallelism as a 

reference (degree 0). 

A   set   of   tools   were   developed:   a   generator 

to produce the workloads and an event-driven 

simulator in C dedicated to the I/O requests 

execution. It implements all the possible parallel 

execution schemes and handles all the related 

synchronisation mechanisms associated with the 

three parallelism degrees (0, 1 and 2). It implements 

both the DL algo allocation algorithm and the 

random one for comparison. 

The parallel execution subdivides user requests into 

physical ones and distributes them across the dies, 

then the planes. Thus, the system is absolutely 

invariant whatever user requests are sequential or 

random.  Also,  it  is  considered  under  permanent 

use. So, time to mount metadata or to gather 

physical requests responses is not considered. 

The focus is put here on the performance in term 

of response time, mainly composed of waiting and 

access time. This one is fixed on SSDs with respect 

to the operation type. For degree 0, the whole SSD 

package is seen as a unit and no other request is 

processed if  the  previous  one  is  not  completed. 

For degree 1, the dies can operate independently 

from  each  others  and  requests  on  different  dies 

can be executed in the same time. For degree 2, 

not only dies can operate independently but also 

the planes within each die. It results in a highly 

parallel execution. 
 

The simulation of every case is run for 250K 

user  requests  with  25%  to  reach  the  permanent 

state. The initial mapping and allocation algorithms 

spread widely data on the SSD components to allow 

the parallel access. the proposed DL  algo  keeps 

this data layout whilst a random allocation choose 

a  random  block  for  the  valid  page  to  hold  the 

new version. Thus, the spatial locality is broken 

without any impact as the pattern layout (seq/rand) 

is useless with SSD internal parallelism.

Trace RD/WR ratio I/O pattern 
RD WR 

S trace 1 0.51/0.49 Seq. Seq. 
S trace 2 0.50/0.50 Seq. Seq. 
S trace 3 0.14/0.86 Rand. Rand. 
S trace 4 0.67/0.33 Rand. Rand. 
S trace 5 0.00/1.00 Rand. Rand. 

 

Parameter Value 
Packages per SSD 1 
Dies per package 16 

Planes per die 2 
Blocks per die 4092 

Pages per block 64 
Block size 256 KB 
Page size 4 KB 

Erase duration 1.5 ms 
Read duration 130 µs 
Write duration 305 µs 
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V.  RESULTS AND DISCUSSION 

 

A. A parallelism oriented data layout strategy 

A serie of simulations using OLTP and scientific 

workloads was performed to analyse the impact of 

the proposed data allocation algorithm (DL  algo) 

and compares it to the random one. 

In case of no parallelism (degree 0), no change 

is observed which was expected because no par- 

allelism is performed and only one request is exe- 

cuted in the whole package at once. The choice of 

the target page location for a write request has no 

impact then. The most important result, is that the 

DLalgo allocation algorithm does not introduce any 

delays and it is usefull only if a parallel execution 

is possible. 
 

 
B. A parallelism oriented data layout strategy and 

interDies concurrent execution 

In this case, Dies can operate in parallel, exe- 

cuting an I/O request each in the same time. The 

results are shown on figures 4 and 5 for OLTP and 

scientific workloads (write) respectively. 
 
 
 
 
 

 
 

 
 

 

 
Fig. 4.  Data layout Vs Random for OLTP workload 

 
 
 
 
 
 

 
 

 
 

 

 
Fig. 5.   Data layout Vs Random (degree 1) for scientific 
workloads 

 

 
We  can  see  for  OLTP  (fig. 4)  that  the  waiting 

time for reads is the same for all data allocation 

strategies. This is not the case for the writes as 

the  waiting  time  is  significantly  reduced  using 

DL algo. For scientific workloads (fig. 5), the 

waiting time is significantly reduced for the five 

traces even for the full write S trace5.

C. A parallelism oriented data layout strategy and 

the interPlanes concurrent execution 

C. A parallelism oriented data layout strategy and 

the interPlanes concurrent execution 

The interPlanes parallelism is the extreme level 

to achieve parallel access. Thus, its exploitation can 

reduce drastically the waiting time. The hardware 

used in this study has two planes for each die: one 

plane composed of the odd blocks and the second 

plane composed of the even ones. The obtained 

results are shown on figures 4 and 6 for OLTP and 

scientific workloads (write) respectively. 
 

 
 
 
 

 
 

 
 

 

 
Fig.  6.    Data  layout  Vs  Random  (degree  2)  for  scientific 
workloads 
 

From both figures, we can see that the interPlanes 

parallelism reduce drasticaly the waiting time up 

to ×10. Both DL algo and random allocation 

stratrgies allow this reduction with an advantage for 

DL  algo especially for long term execution when 

the  data  layout  changes due  to  write  operations 

make the parallel access hard to achieve. 
 

VI.  CONCLUSION 

In this paper, a data layout algorithm DL  algo 

was proposed to enhance the exploitation of the 

SSD internal parallelism. Its impact was analysed 

at a fine grain parallelism: up to the planes level for 

data intensive applications such as OLTP and sci- 

entific applications using traces-based workloads. 

The results of the conducted simulations show a 

significant reduction factors for the waiting time, 

up  to  x10.  The  proposed  DL  algo  allows  and 

enhance the parallel access to the lowest level of 

the SSD internal components. It is more performant 

comparing to the random algorithm at long term. 

For  the  near  future,  considering  the  interPack- 

ages/interChannels parallelism will  complete  our 

study. Also, considering both external and internal 

parallelism in an SSD array will be a step forward 

to  efficient large SSD-based storage systems for 

data-intensive applications. 
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