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Abstract—In recent years, the algebraic structures of rough 

set theory has been rapidly developed. This paper concerns a 

relationship between rough sets and projective module. We shall 

introduce the notion of rough projective module, which is an 

extended notion of projective module. 
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I.  Introduction 
Information on the surrounding world is imprecise, 

incomplete or uncertain. Still our way of thinking and 
concluding depends on information at our disposal. This 
means that to draw conclusions, we should able to process 
uncertain and/or incomplete information. To analyze any type 
of information, mathematical logic are most appropriate, so we 
should have to generalize the algebraic structures and logic in 
the sense of vague or imprecise. Many algebraic structures 
have been developed over precise set to deal the exact 
situations. But very few algebraic structures and logics are 
available to deal with imprecise or vague situations 
mathematically. Rough set theory is a powerful mathematical 
tool to handle imprecise situations and rough algebraic 
structures can play a vital role to handle such situations. 

In Pawlak rough set theory, the key concept is an 
equivalence relation and the building blocks for the 
construction of the lower and upper approximations are the 
equivalence classes. The lower approximation of the given set 
is the union of all the equivalence classes which are the 
subsets of the set, and the upper approximation is the union of 
all the equivalence classes which have a non-empty 
intersection with the set. The object of the given universe can 
be divided into three classes with respect to any subset  

(1) the objects, which are definitely in  ; 

(2) the objects, which are definitely not in  ; 

(3) the objects, which are possibly in  ; 

The objects in class (1) form the lower approximation o A, and 
the objects in class (1) and (3) together form its upper 
approximation. The boundary or A is defined as the set of 
objects in class (2). Z. Bonikowaski introduced the algebraic 
structures of rough sets [24].   
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R. Biswas and S. Nanda introduced the concept of rough 
group and rough subgroup [13]. N. Kuroki studied the rough 
ideals in semigroups [10]. B. Davvaz introduced the roughness 
in rings [1]. B, Davvaz, M. Mahdavipour introduced the 
roughness in Modules [2]. Rough modules and their some 
properties are also studied by Zhang Qun-Feng et al. [25]. 
Standard sources for the algebraic theory of modules are [11, 
6].  One can find more on rough set and their algebraic 
structures in [2, 3, 7, 9, 12, 17, 21, 22]. In recent years, there 
has been a fast growing intrest in this new emerging theory, 
ranging frame work in pure theory, such as algebraic 
foundations and mathematical logic [26-29] to diverse areas of 
applications. 

The aim of this paper is to investigate the Rough Projective 
Module. The rest of the paper is organized as follows: In 
section 2, preliminaries are given. In section 3. We introduce 
the concept of rough projective module. Finally, our 
conclusions are presented. We have used standard 
mathematical notation through-out the paper and we assume 
that the reader is familiar with basic notions of algebra and 
rough set theory. 

II. Preliminaries 
In this section, we give some basic definitions of rough 

algebraic structures and results which will be used later on. 

Definition 2.1: [20] A pair (   )  where      and   is 
an equivalence relation on  , is called an approximation 
space. 

Definition 2.2: [1]For an approximation space (   )  by a 
rough approximation operator in (   ) we mean a mapping 
      ( )   ( )   ( ) defined by 

   ( )  (     ) for every    ( ) 

Where   *   |, -    +   *   |, +     + . 
    is called the lower rough approximation of   in (   ), and 

    is called upper rough approximation of   in(   ). 

Definition 2.3: [1] given an approximation space (   )  a 
pair (   )    ( )   ( ) is called a rough set in (   ) iff 
(   )     ( ) for some    ( )  

Example 2.1: Let (   ) is an approximation space, where 
  *             + and an equivalence relation    with the 
following equivalence classes: 

   *      + 

   *        +  

   *  + 

   *  + 
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Let the target set be   *     + then    *  + and 

   (*  +  *        +) and so     ( )  (*  + *  +  
*        +) is a rough set. 

Definition 2.4: [5] Let    (   ) be an approximation 
space and   be a binary operation defined on   . A subset 
  (  )or universe    is called a rough group if     ( )  

(   ) satisfies the following property: 

(1)                       

(2) Association property holds in      

(3)       such that                     is 
called the rough identity element. 

(4)            such that                  is 
called the rough inverse element of          

Definition 2.5: [7] Let (    ) and (    ) be two 
approximation spaces,   and    be two operations over 
   and    , respectively. Let        and       . 
    (  ) and     (  ) are called homomorphic rpugh set if 
there exsts a mapping    of     into     such that 

                   (   )   ( )     ( )  

If    is 1-1 mapping    (  ) and     (  ) are called 
isomorphic rough sets. 

Definition 2.6: [15] An algebraic system  (   ( )     
) is called rough ring if it satisfied: 

(1) (   ( )   ) is a rough commutative addition group. 

(2) (   ( )   ) is a rough multiplicative semi-group. 

(3) (   )             and    (   )      
   ,              ( ). 

Definition 2.7: [25] Let  (   ( )     ) be a rough ring 
with unity,  (   ( )  ) a rough commutative group. 
   ( ) is called a rough left module over the ring     ( ) if 

there is a mapping       (   )     such that  

(1)  (   )                ( )          ( ) 

(2) (   )                 ( )      ( ) 

(3) (  )   (  )           ( )       ( )  

(4)           1 is a unit element of    ( ) and    
   ( ) 

A rough right module over the ring     ( ) can be defined 
similarly. Who do not require rough ring to be unital omit 
condition (4). 

Definition 2.8: [11] A rough subset     ( )    of a 
rough module     ( ) is called rough sub-module of 
    ( ) , if    ( )satisfies the following: 

(1)    ( ) is a rough subgroup of    ( )  

(2)               ( )  and       ( ). 

Definition 2.9: [25] Let     ( ) and    (  ) be two 
rough R-moduel. If there exists a mapping    of   into    
such that 

(1)   is a homomorphism of a rough group 
   ( ) into    (  )  

(2)  (  )    ( )          ( )     ( )  

then   is called a homomorphism of rough module    ( ) 
into    (  ). If    is a 1-1 mapping, it is called an 
isomorphism of rough module    ( ) into    (  ). 

III. Rough Projective Module 
Definition 3.1:  A sequence     (  )

         
→      ( )

         
→      (   ) of two homomorphism of a module over the 
ring     ( ) is said to be rough exact if    ( )     ( ). 
This happens if and only if  ( )      and (  ) the 

relation  ( )          (               )  implies 

that    (  ) for some       (  ). Indeed condition (i) 
and (ii) mean respectively that    ( )     ( ) and 
   ( )    ( )  

Definition 3.2: An    ( )-module    ( ) is projective if 
and only if every diagram 

 

with exact row (i.e., with    surjective) can be completed to a 
commutative diagram 

 
by means of a homomorphism       ( )     ( ) . Any 
homomorphism      ( )     ( ) for which         is 
called a lifting of     (over  ); thus    ( )is projective if and 
only if any homomorphism     of     ( ) into any quotient 
    (   ) of any    ( )-module    ( ) can be lifted to a 
homomorphism   of    ( ) into    ( ). 

Definition 3.3: Let    ( ) be a rough ring and let 
   ( ) be a    ( )-rough module. A subset       ( )is 
said to be    ( )-linearly dependent if there exist distinct 
               in   and elements                of 
   ( ), not all of which are zero, such that 

                   

A set that is not    ( )-linearly dependent is said to be 
   ( )-linearly independent. 

Definition 3.4: Let    ( ) be an    ( )-rough module. 
A subset   of    ( ) is a basis of    ( )  * + if and only 
if every       ( ) can be uniquely written as 

                   

for                ( ) and                ( ). 

Definition 3.5: An    ( )-rough module    ( ) is a 
rough free module if it has a basis. 
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Example 3.1: Every rough free module is rough projective 

module. 

Solution:  For, let us be given the diagram 

 

and suppose that    ( )is rough free module, take a basis 
       of    ( ) and set        (  )    . Since   is 
surjective, their exist elements       ( ) such that  (  )  
  
      . As    ( )is rough free module with basis       
   There exists a (unique) homomorphism      ( )  
   ( ) such that  (  )        . Since  ( (  ))  
  (  )    

      (  ) for every    , therefore       , and 
the proof of our assertion is complete. 

Example 3.2: There are modules that are not rough 
projective module for example, ∏    , where      for 
            is not a rough projective  -module. 

Preposition 3.1: Let us be given two coterminal 
homomorphism on rough projective modules      ( )  
   ( )       (  )     ( ) and form the diagram 

 

a pullback of       or of the above diagram, is a pair of 
coinitial mappings       ( )     ( )          ( )  
   (  ) such that the square 

 

is commutative. 

Theorem 3.1: An    ( )-module    ( ) is rough 
projective if and only if every rough exact sequence of the 
form 

     (  )     ( )
     
→    ( )               ( ) 

Splits. 

Proof: If     ( ) is projective and (1) a rough exact 
sequence, then lifting the identity endomorphism     of    to a 

homomorphism of    ( ) into    ( ) we obtain a 
homomorphism      ( )     ( )  

 

such that        . Therefore the sequence (1) splits. 

Conversely: suppose that every sequence of the form (1) 
splits, and let us be given the diagram 

 

with    surjective. Form the pull-back 

 

of the above diagram, since   is surjective, so is   ; therefore 
denoting by     (  ) the kernel of   , we have the exact 
sequence  

     (  )     ( )
     
→    ( )      

Since this sequence splits, there exists       ( )  
   ( ) such that       . Then       is a homomorphism 

from     ( ) to    ( ), and have                 . 
Hence     ( ) is rough projective. 

Preposition 3.2: If       ( )     ( ) is an 
epimorphism and     ( )is a rough projective     ( )-
module, then     ( )is isomorphic to direct summand 
of     ( ). 

Proof: Since the row exact diagram  

 

can be completed commutatively by an     ( )-linear 
mapping       ( )     ( )such that          is a 
splitting map for   and   is a homomorphism and     ( )  
  ( )       . So the result follows since    ( )  
   ( )   

Lemma 3.1: The rough ring     ( ) is a rough projective 
    ( )-module. 

Proof: We need to show that any row exact diagram 

 

can be completed commutatively by an     ( )-linear 
mapping       ( )     (  ) . If   ( )    and   
   (  ) such that  ( )   , let       ( )     (  ) be 
defined by   ( )     . Then    is well defined,    ( )-
linear and       . 

IV. Conclusion and Future Work 
Rough set theory is a new powerful Mathematical tool for 

dealing uncertain problems. Recently, rough set theory has 

received wide attention in the real life applications and the 

algebraic studies. In recent years, the combination of rough set 
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theory and abstract algebra has many interesting research 

topics. In this paper we focused on algebraic results by 

combining rough set theory and abstract algebra. In other 

words we have provided an algebraic viewpoint for rough set 

theory and we hope the results given in this paper can further 

enrich rough set theories. Naturally applying our results to 

other fields i.e. applications of module theory, is also a 

valuable work and we will present it in the future work. 
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