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Automatization Parameterized Exponential Generating Functions 

for Addition Theorem  
Sesappa A Rai 

 
Abstract: Generating functions play a very important role in 

most of the Mathematical and statistical problems. The 

present study has derived and discussed the addition theorem 

of special functions whose generating function is exponential. 

The code of the derivative is also discussed. Exponential 

generating functions and other special functions have high 

importance in addition theorem, applicable in various recently 

developing fields like Computational electro-magnetic fields 

and other computational fields. It works by automatization in 

Fast Multi-pole Method using Singular Value Decomposition 

(SVD). Its code can be applied using Mathematica, Matlab 

and other software packages. 

Keywords - Generating functions, addition theorem, 

automatization. 

1.1 Introduction 
A bivariate function g(t, s) in a bilinear form is the 

starting point for developing acceleration techniques and to 

develop computational methods for deriving numerical 

solution of an optimization problem, 

 x,b
t T s S

max b(t)g(t,s)x(s),
 


 

or, a system of equations 

 s S

g(t,s)x(s) b(t),     s S,   t ,


  
 

where T and S are large subsets of discrete points R
n
, 

wherein b(t) is defined on T and x(s) defined on S. 

Numerical solutions to such large problems, resort in 

general, to iterative methods, where g(t, s) is evaluated or 

re-used many times. The sample points in S or T may not 

be equally spaced along each dimension of R
n
. The sample 

points may change from an iteration step to the next. Here, 

g(t, s) may represent the response of b at t upon x at s, or 

the interaction or correlation between b and x at t and s. We 

refer to g(t, s) simply as an interaction function. 

When an interaction function is provided with large data 

sets T and S, we seek the potential in compressive 

representation for computational efficiency. The previous 

problems can be described aggregately in their respective 

matrix forms.  

    G(T,S)x(S) b(T),   

A compressed expression of the matrix G(T,S), or its 

sub-matrices, leads to an efficient algorithm for operations 

with the matrix. Note that any sub matrix of ' '( , )G T S is 

associated with a subset 
'S S  and a subset    

'T T and vice versa. The matrix ' '( , )G T S may be a sub 

matrix of another matrix. 
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1.2 Expansion-induced compressive representation 

We briefly describe the expansion approach to obtaining a 

compressive expression of a sub matrix ' '( , )G T S . Suppose 

we have an expansion of g(t, s) for all ( , )  't s T S  as 

follows:  

For any 0,   there are natural numbers M and N so that 

M N

m c mn c c n c MN
m 0 n 0

g(t,s) (t, t ).h (t ,s ). (s,s ) (t,s)
 

         (1) 

( , ) ,     ',  ',MN t s s S t T        

with respect to a pair of reference points ct and cs . The 

expansion is bilinear in m and n  with the separation of 

variables t and s, via the reference points. In matrix form, 
' ' ' T ' ' '

M c MN c c N c MNG(T ,S) (T ,  t ) H (t ,  s ) (S,  s ) E (T ,  S),    

where the matrices are composed of the corresponding 

elements in (1). With a translation-invariant interaction 

function, the reference points in the expansion (1) are 

translations in t and s, respectively. In the matrix form, 
' ' ' T ' ' '

M c MN c c N c MNG(T S) (T t ) H (t s ) (S s ) E (T ,S)          (2) 

The first term may render a compressed and sufficiently 

accurate representation of the sub matrix. A compressed 

factorization is obtained when the number of non-zero 

elements in MNH  are sufficiently smaller than that of 

' '( , ).G T S This condition is met when MN are sufficiently 

smaller than
' ' ,T S or when MNH  is sufficiently sparser, 

especially, when MNH is diagonal. 

Hitherto, we refer to (2) as a bilinear translative (BiT) 

factorization. The BiT factorization is recursive if the 

translation factor ( )MNH t s also has a BiT factorization, 

and so on. A recursive BiT factorization may lead to a data 

or matrix compression at multiple levels. The analysis and 

algorithm development for fast calculation via such 

recursive translations originate in the Fast Multipole 

Method [2,6,8]. The methodology has been applied 

successfully to many computational problems with special 

interaction functions [3,7, 8]. 

    With the expansion-compression relation in place as 

described above, one or more than one bilinear translative 

expansions remains to be found. Some expansions may 

lead to better compressions than others. However, the 

derivation of BiT expansions, can be problematic. The 

exploration of such expansions in exists, or in variety, is 

limited by individual skills, experience or time. A manual 

derivation is often tedious and error-prone. Available 

symbolic computation platforms [3,6,7,8] do not provide 

direct aid for this particular need. 

We address these issues by introducing a calculus approach 

to BiT expansions for a broad family of functions.  

 

 



 

11 

 

Proc. of the Second Intl. Conf. on Advances in Applied Science and Environmental Engineering - ASEE 2014. 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-033-0 doi: 10.15224/ 978-1-63248-033-0-03 

 

1.3 The Calculus for BiT expansions 

The calculus approach starts with bilinear expansions of a 

particular expansion form, 

 ( , ) ( ) ( ),
U

k k
k L

g x t x t 


    

where k (t)  are linearly independent functions over some 

open region of t. We refer to k (t) as basic functions, or 

expansion terms. We use initially the integer power 

function 
k

k(t) t  as the expansion term. We refer to 

k (x) as the coefficient functions. The index ranges 

between the lower bound L and the upper bound U, 

.L U Each of the bounds may be finite or infinite. The 

series expansion is semi-bounded when either L or U is 

finite; it is bounded when both L and U are finite. A 

coefficient function is zero when its index is outside of the 

bounds. Two features of the expansion shall be noticed 

immediately. First, the variable x and t are separated in the   

bilinear expansion form. Second, the function g(x, t) may 

be viewed as the generating function that defines or 

encodes coefficient functions k (x) . 

 The calculus for bilinear expansion introduced here is 

distinguished in three main aspects. (A) The functions are 

not restricted to those with the zero lower bound expansion. 

More specifically, expansions with pole terms, [1,5,10]  

i.e., negative power terms in t, are included. (B) Under 

certain conditions, the roles of term functions and 

coefficient functions in the bilinear representation can be 

exchanged. (C) The calculus is compact in itself. It consists 

of a small set of elementary expansion rules and a small set 

of initial expansion cases. The approach is illustrated with 

numerous function expansions that have special positions 

in both mathematical analysis and numerical computation. 

 

1.4 Elementary Expansion Rules 

In this section the power function 
kt is used as the basis 

functions, 
U

k

k
k L

g(x, t) (x)t .


      (3) 

 For convenience in expression, from time to time the 

equivalent form 

 

U
k

k
k L

g(x, t) (x) t k!.


  is used.  

 Variable t is associated with the basis functions, and 

variable x is associated with the coefficient, or generated, 

functions. Note two special cases 

. In the first case, L = U = 0,  g(x, t) = g(x). In the second, 

at any specific value * *,  ( , )x g x t corresponds to a scalar 

sequence *{ ( )}.k x  

The base cases 

     For bounded series, start with simplest polynomials, the 

constant 1 and the linear functions x and t. An elementary 

semi-bounded expansion is as follows, 

 
0

1
.

!

xt k k

kk

e x t
k





     (4) 

The variables x and t are separated naturally in the 

expansion, by the Euler’s identity exp( ) cos sinit t t  , 

where 
k

2k 2k

k 0

k
2k 1 2k 1

k 0

( 1)
Cos(xt) x t ,

(2k)!

( 1)
Sin(xt) x t .

(2k 1)!






 















 

2.1 Bilinear expansion of power functions 

Example 1. The binomial expansion,. a direct application of 

the rule Hadamard product to the right-hand side of the 

identity .x y x ye e e  recovers the familiar binomial 

expansion of ( )kx y for 0k   the following symmetric 

representation is used, 

0

( )
,   0.

! ( )! !






 




k k p pk

p

x y y x
k

k k p p
       (5) 

This expansion contributes to the establishment of Theorem 

1.The next two examples illustrate the use of the division 

rule. They show the essential difference among bilinear 

expansions of ( )kx y between the case of positive 

powers and the case of negative ones in t. The latter is not 

bounded in bilinear expansions and imposes more 

condition on the expansion. 

Example 2. The bilinear expansion of  
1

.
c ax by 

 This 

includes in particular, the reciprocal difference, 

 

p

p 1
p 0

1 x
.

y x y









          (6) 

The expansion holds when .y x The function 
1

y x
is 

also named the Cauchy function. It is the kernel function of 

the Cauchy integral formula and for the Hilbert transform. 

This identity is related to the well-known Neumann’s 

summation. Here, it is observed that (6) may be also seen 

as the expansion of powers of y. 

Example 3. The expansion of the reciprocal of a quadratic 

polynomial 

 By the division rule, 

2

2 2
0

1
( ) ,        0,k

k
k

x t c ax
c ax bxt t






  
  

  

2 1 2

0 1 0( ) ( ) ,      ( ) ( )  x ax c x bx x          (7) 

1 0 1( ) ( )( ( ) ( )),   k k kx x bx x x     

For a special instance, 

2 2
0

1 1
.

( )

k

k
k

k
x

y x y










         (8) 

This can be also obtained by squaring the expansion of the 

Cauchy function in (6) 

2.2 Recursive Translations 

     Thus bilinear expansion rules for elementary operations 

have been developed. Now, the bilinear translative (BiT) 

expansion is to be developed especially with recursive 

translations. Many functions of interest, such as distance 

related functions, are translation invariant, namely 

( , ) ( ,  )g t s g t h s h   for arbitrary translation h. In 

particular, at , ( , ) ( ).h s g t s g t s    
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The Cauchy function and the reciprocal distance function, 

discussed earlier, are translation invariant. Among others, 

the translated Gaussian 
2exp( ) ) ,   0,x t     

appears in a wide range of application problems. When a 

translation invariant function is expanded in the form (3), a 

bilinear and translative (BiT) expansion is readily available. 

3.1 The recursive translation theorem 

   In this section the rule of translation and illustration for 

the application of the rule is introduced. 

Theorem 1: Assume ( , )g x y  is translation invariant and 

semi-bounded in expansion, 

0

( ) ( ) !.
U

k

k
k

g x t x t k


      

Then, 

0 0

( ) ( )
( ) ( ) .

! !

p qU U k
c c

p q c c
p q

x x y y
g x y x y

p q





 

 
          (9) 

where the reference points cx are chosen according to the 

expansion condition. Furthermore, 

0

( ) ( ) ,        0 .
!

pU k

k k p
p

y
x y x k U

p
 






        (10) 

Proof: Since  ( ) [( ) ( )],c c c cx y x y y y x x        

the expansion of g is, 

[( ) ( )]
( ) ( ) ,   0 .

!

  
    

k

c c
k c c

k

y y x x
g x y x y k U

k
  

This leads to the BiT expansion in (9) with the binomial 

expansion of [( ) ( )] .k

c cy y x x   Next, 

0 0

( )
( ) ( ) ( )

! !

pkU U

k p
k p

t x t
g d t d x d

k p
 

 


      

0 0 0

( ) ( ) .
( )! ! ( )! !

p k k p k kpU U U

p p
p k k p k

x t x t
x d x d

p k k p k k
 

 

   

   
 

     

By comparison, in terms of 
kt , we have  

0

( ) ( ) .
!

qU k

k k q
q

x
d x d

q
 






     

Let y = d + x,then   we get(10). 

The recursive feature of (9) lies in the self-referenced 

bilinear expansion of  ( )k x y   in(10). Apply (10) twice, 

we get 
2

0 0

( ) ( )
( ) ( ) .

! ! !

p qkU k U k
c c

p k p q c c
p q

x x y yt
x y x y

p k q
 

 

 
 

 
   

For a simple example, the theorem can be applied directly 

to (8) for a BiT expansion of the Cauchy function with 

coefficient functions
1( ) 1 ,   0.k

k y y k    

3.2 A BiT expansion of the Gaussian 

The translated Gaussian 
2 2( , ) exp( ( ) )g t s t s     

appears in a wide range of computational applications [10]. 

A bilinear expansion is first developed. With 

normalization, it is assumed 1.   Factorization of the 

translated Gaussian, 
2 22( , ) s st tg t s e e e  and the 

expansion of 
2exp( )t from the base case can be done by 

applying the rule of substitution of  ( 1)x    and the rule 

of dilation with 2d  . By the rule of Hadamard product 

and the rule of diagonal product, this would result in 

  
22

0

( )
!

k
st t

k
k

t
e H s

k






 , 
2( )

0

( )
!

k
t s

k
k

t
e h s

k


 



  

with 

  

/2 2
2

0

( 1) (2 )
( ) ! ,  ( ) ( ).

( 2 )! !

   





 



k q k q

s

k k k
q

s
H s k h s e H s

k q q
 

(The Hermite function is given by [10]), where .   is the 

floor function. In fact, ( )kH s and ( )kh s  are known as the 

Hermite polynomials and the associate Hermite functions, 

respectively. That is, 2exp( ( ) )t s  is the generating 

function of the Hermite functions. 

The bilinear expansion of the translated Gaussian satisfies 

the condition of Theorem 1. Thus, 

  
2( )

0 0

( ) ( )
( ) .

! !

p q
t s c c

p q c c
p q

t t s s
e h t s

p q

 
 


 

 
    

And the Hermite function ( )kh t s has the bilinear 

expansion 

0 0

( ) ( )
( ) ( ) .

! !

p q

c c
k p q k c c

p q

t t s s
h t s h t s

p q

 

 
 

 
     

4. Logarithm  

In this section the expansion rules for the most common 

compositions among bivariate functions is introduced. First 

the special rule for integer powers and root extraction, then 

the rule for logarithm and finally the anti-logarithm 

operation with variable roots and powers is introduced. 

To describe the expansion rule for logarithm, it suffices to 

use the natural base. 

Theorem 2: Assume that a(x,t) is positive and semi-

bounded in expansion  

0

( , ) ( ) ,k

k
k

a x t x t




 with 0( ) 0,x   Then, the 

coefficient functions of ( , ) log( ( , ))g x t a x t  in the 

expansion (3) are as follows: 

1
0 0 1

0

k 1
k 1

k 1 p 1 k p
p 00 0

(x)
(x) log( (x)), (x) ,

(x)

(x) 1
(x) (p 1) (x) (x).

(x) (k 1) (x)




  



    




     

  


 

This rule remains valid with the term reversal. 

Proof: Assume the conditions, 

  0 0( ) ( ,0) 1 ( ,0) 1 ( ).x g x na x n x     and consider 

dt
  on both sides of ( , ) log( ( , ))g x t a x t , which leads 

to . ,t tg a a where .tg g t  The recursion would 

follow term by term matching. In the case that the finite 

lower or upper bound  is non-zero, the application of the 

logarithm rule is preceded by a shift of terms and 

followed by an addition of ln( ),t  for t>0, 
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2k 1

k 0

1 t 1
log(t) 2 ,     t 0.

2k 1 t 1





 
  

  
  

5. Generation of the associated Laguerre polynomials 

     The use of expansion rule for variable powers with 

function is illustrated, 

 

xt (1 t)

1

e
g(x, t) ,    

(1 t)

 





      (11) 

with a natural number .This function is known as 

generating function for Laguerre polynomials with 0  

and the associated Laguerre polynomials 

 ( )kL x with 0 . These polynomials with expansion 

rules from simple initial cases are generated without resort 

to additional resource. Consider first the expansion of  
( , )( , ) ( , )a x tr x t b x t with 

( , ) xtb x t e and
1( , ) (1 )a x t t   . 

 Denote by ( )k x the coefficient functions of 

 
2(1 ) ( , ) ( , ).tt r x t xr x t  is obtained. 

  It follows ,from this equation, 

0 1

k 1 k k 1

(x) 1,   (x) x,

1
(x) [(2k x) (x) (k 1) (x)],  k 1.

k 1
 

    

       


 

Finally, the division rule is applied to 
1( , ) /(1 )r x t t  to 

obtain the coefficient functions for ( , )g x t , 

  

k
p p

k k 1 k p
p 1

L (x) (x) ( 1) C L (x), 


    

where 1

pC  are the binomial coefficients. In particular the 

first couple of associated Laguerre polynomials for each 

0. is listed. 
2

0 1 2

( 2)(( 1 2x) x
L (x) 1,   L (x) 1 x,  L (x)

2

   
      

Details of the simplification are skipped. 

6. 1 Addition theorem 

    Binomial expansion for power functions of addition 

theorem are extended for the functions k , defined by a 

generating function g(x, t) of the form (7). 

Theorem:3 Assume that functions k k(x),  (x)  and 

k (x) are generated by g(x, t), a(x, t), and b(x, t),  

respectively, with the same lower bound L on k, L = 0 or 

Lassuming further that 

a a b bg(x y, t) a( x, t)b( y, t),        (12) 

For some scalars * and * Then k (x) has the addition 

expansion, 
k L

p k p

k a p a b k p c
p L

(x y, t) ( x) ( y),







             (13) 

The addition expansion in (12) is bounded when L = 0 and 

unbounded when L . The proof is based on the 

condition of (12) and application of the multiplication rule. 

If g = a = b, k (x) are closed among themselves in the 

expansion of addition, in the variable x. If g, a and b belong 

to a family of functions, k (x) are closed under addition 

within the family. 

A couple of function families discussed this far are closed 

under the addition expansion. They include the integer 

power functions themselves by the generating function 
xte  

the exponential functions exp(kx) by 
ixte )exp( , and the 

Hermite polynomial by
2exp(2xt t ) , [1]. In the latter 

case one finds that 1 2, 2   and L=0. Thus, 

addition theorem for the Hermite polynomials is as follows: 

k
p k pk

k /2
p 0

k

k p k pk /2
p 0

H ( 2x) H ( 2y)H (x y) 1
;

k! 2 p! (k p)!

or

k1
H (x y) H ( 2x)H ( 2y)

p2













 
   

 





 

Defining 
xt (1 t) 1g (x, t) e   for 1.   For each 

,  g (x, t) generates a family of polynomials 

 kL (x),  k 0 . This quickly verifies that 

 n n 1g (x y) g (x)g (y)    for any n, 1 n    

Thus, 

k
n n 1

k p k p
p 0

L (x y) L (x)L (y). 




    

That is kL (x),  k 0 are closed under addition, and the 

others are closed under addition in the family for all 

1.     From the associated Laguerre polynomials, it is 

observed that expansion of the function family is for 

convenience in addition expansions. In fact, another 

addition expansion is got for the Hermite polynomials, 

using the decomposition 
2 22(x y)t t 2xt t 2yte e e    .The first 

factor on the right hand side generates kH (x)
,

k!
and the 

second generates
k

(2y)
.

k!
 

6.2 Expansions in the Bessel Functions 

    In this section, expansion of the Bessel function for 

integer order, kJ (x) , is illustrated, it is seen that the 

generating function is exp(x(t 1 t) 2) . Bessel 

functions of integer order are important in their own right. 

Certain special properties are first described and then BiT 

expansion for Bessel functions are discussed. 

7.2 Special properties 

    The properties directly relevant to BiT expansion of 

interest are described. Let g(x,t) exp(x(t 1 t) 2)  . 

The generation function satisfies by condition and in 

particular, the addition function for Bessel function is as 

follows, k p k p
p

J (x y) J (x)J (y).





    
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That is, these functions are closed under addition among 

themselves. 

     The Bessel functions are symmetric about the origin, 

namely, 
k

k kJ ( x) ( 1) J (x).   This can be verified 

easily by matching the terms
kt  on both sides of the 

identity g( x, t) g(x, t).  The integer power functions 

have the same properties about and at the origin.. 

     The condition in Theorem 3 for the recurrence in BiT 

expansion requires that the expansion in kJ (x)  be unique. 

In fact, any function expanded in terms of the Bessel 

functions can be uniquely represented in terms of the 

Bessel functions of natural order. The generating function 

is invariant under the term reversal and negation, i.e., 

g( x,t) g(x, 1 t).   Therefore, 

 
k

k kJ (x) ( 1) J (x).        (14) 

Thus, the conversion to expansion of Bessel functions of 

natural order is straightforward. Therefore the following 

expansion format is used 

. 0 0 k k
k 1

f (x, y) (y)J (x) 2 (y)J (x).




        (15) 

Further the variable x is associated with basis functions, 

indicating a hierarchy relationship. The basis functions are 

defined by a generating function in terms of 
kt . In 

particular, the generating function is turned the other way 

around,

x(t 1 t)
k k2

0 k
k 1

g(x, t) e J (x) (t ( 1 t  ) )J (x)




      (16) 

The expansion of this function in the Bessel basis is semi-

bounded while the expansion in the integer power functions 

is unbounded. 

     The expansion transformation (16) is the result of base 

transformation and integral representation of the 

coefficients of a function in Bessel basis. However, it no 

longer involves the basis transformation or integral 

calculation. The derivation is also based on Hadamard 

product rule, which permits the pole. Note that there is a 

recursion relation among the coefficients of Neumann’s 

polynomials. 

Conclusion 

  The basic theory and calculus for bilinear expressions of 

bivariate functions are presented, especially for recursive 

bilinear expansions and translation-invariant functions. 

There are only five basic rules for bilinear expansions, 

namely, the rules i) variable substitution, ii) linear 

combination iii) multiplication, iv) logarithm and v) 

antilogarithm that includes division. With these rules, 

expansions of various functions can be reached from only a 

few initial cases, Additional three rules exist for recursive 

BiT expansions, vi) and addition theorem.  

Some well-known expansions are recovered as illustrative 

and manifesting examples. They include the generation of 

Hermite, Legendre, Laguerre polynomials as well as their 

addition theorems. Other expansions in our illustration are 

rarely seen in popular literature, such as transformation 

from the natural power functions to the natural order Bessel 

functions, or the expansion of the Cauchy function in the 

Bessel basis. The theory and the calculus method has not 

only unified these expansions, but also simplified or 

demystified the derivation process. The calculus renders 

bilinear expansions and recursive BiT expansions as a 

computation procedure in itself. 

Although most of the examples are one dimensional in the 

source and target coordinates, the expansion method can be 

applied to high dimensional problems in a Cartesian 

coordinate system, one dimension at a time. In fact, the 

expansions in Bessel functions can be also carried over 

straight forwardly to two-dimensional problems in 

cylindrical coordinate system.  

 The generalized expansion theory and calculus has 

extended the scope of recursive BiT expansions for 

translation-invariant functions. This generalization also 

offers the variety in expansion for exploring potential in 

compression or numerical property in finite-precision 

computations, The impact of the generalized theory is on 

the selection of, or the transformation to, an adequate basis 

for compressive representation for any given situation. To 

this very purpose, this computation platform supports 

expansion calculus which is much needed to facilitate and 

accelerate the process of algorithm development. 
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