

30

Proc. of the Second Intl. Conf. on Advances in Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-034-7 doi: 10.15224/ 978-1-63248-034-7-31

Malware Simulation using JADE
 Manish Jain and Dinesh Gopalani

Abstract— One of the problems related to the simulation of

attacks against computer networks is the lack of adequate tools

for the simulation of malicious software (malware). Malware

attacks are the most frequent in the Internet and they pose a

serious threat against networked infrastructures. To address this

issue we developed a Malware Simulation Tool using JADE.

The framework uses the technology of mobile agents and it aims

at simulation of various types of malicious software. Moreover it

can be flexibly deployed over a real computer network system.

Keywords—malware, simulation, mobile agent, JADE

I. Introduction
In our work we address the problem of security of computer

networks. We study the vulnerabilities and the potential malicious

threats that might affect them. We reconstruct a computer network in

our laboratory and in this configuration we implement attack sce-

narios.

For a better comprehension of our work, we would like to provide a

categorization of the malware first. Malware can be categorized into

following families:

 Viruses which are self-replicating programs able to

attach themselves to other programs (host files) such

as executables, word processing documents and

require human interaction to propagate. The code for

a virus usually consists of a finder, a replicator and

often a payload.

 Worms self-replicating programs autonomously

(without human interaction) spread across a network.

They consume the bandwidth of the network by

replicating themselves. The difference from virus is

that it does not need any host executable file rather it

uses the OS vulnerabilities.

 Trojan horses disguise themselves as useful pro-

grams while masking hidden malicious purpose.

Trojan horse is actually a non-self-replicating

Manish Jain

Computer Science Department, MNIT, Jaipur

India

Dinesh Gopalani

Computer Science Department, MNIT, Jaipur

India

malware that appears to be a legitimate soft- ware

and perform a desirable function for the user but

instead facilitates unauthorized access to the user’s

computer system.

 Other Malware include Keystroke Loggers, Botnets,

Spyware, Adware, Rootkits etc. Besides, there are

also combination of two or more malware.

Our Malware Simulator is a software framework which aims

at simulation of various malicious software in a computer

network.

The paper is organized as follows: in Section II we present a

brief overview of the related works and how our work is

different from the those works. In Section III, we describe the

methodology used for our Malware Simulator and the

simulation environment, in which the framework is deployed.

In Section IV, we provide the details of the analysis and the

results. Finally, in Section V we present the conclusion. At

last we give a list of the references used.

II. Related Work
As already mentioned, we haven’t been able to identify any

compound frameworks for performing simulations of diverse

types of malware. However there are documented studies on

simulation of particular malware families such as computer viruses and

worms. The studies on virus simulation tools span between:

 Educational simulators i.e. programs demonstrating the

effects of virus infection. This group of programs include

Virus Simulation Suite written in 1990 by Joe Hirst, which is

a collection of executables, that simulate the visual and aural

effects of some of the PC viruses. Another example is Virlab

from 1993, which simulates the spread of DOS computer vi-

ruses. As it can be noticed, the programs are quite out of date,

and today they would rather serve just as a historical

reference.

 Anti-virus testing simulators i.e. programs which are

supposed to simulate viral activity, in order to test anti-virus

programs without having to use real, potentially dangerous,

viruses.

 Concerning the simulation of worms, the prevalent work was

done on developing mathematical models of worm

propagation, which are based on epidemiological equations

that de- scribe spread of real-world diseases. The empirical

approaches concentrated mainly on single- node worm spread

simulators, which are dedicated to run on one machine. Only

few distributed worm simulations were implemented but they

31

Proc. of the Second Intl. Conf. on Advances in Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-034-7 doi: 10.15224/ 978-1-63248-034-7-31

approach modeling of worm propagation in the Internet and

thus they don’t run arbitrary network of predefined topology.

In contrast to the alternative works on malware simulation
which use modelling approaches to reconstruct the underlying
network, we build a real, physical computer network in our
laboratory.

III. Simulation Environment

Our Mobile Agent Malware Simulator Framework can be

thought of as a software toolkit which aims at simulation of

various malicious software in a computer network. The

framework aims at reflecting the behaviours of various

families of malware (worms, viruses, malicious mobile code

etc.) and various species of malware belonging to the same

family (e.g. macro viruses, metamorphic and polymorphic

viruses etc.).

To understand the concept of mobile agent, we would like

to provide a brief description of software agents here.

Software agents: The simplest definition that could be given

for software agents is that these are software that have their

own IQ and hence can act on user’s behalf. Typically, the

concept of an agent is described as a complex software entity

that is a self-contained object capable of acting with a certain

degree of autonomy in order to accomplish tasks on behalf of

its user in an intelligent manner and that is responsive to

changes in the environment without requiring constant human

guidance or intervention. Ideally, an agent makes assumptions

based on preferences you’ve defined, or that it has learned by

analysing your behaviours.

Software agents are software programs that are:

 Autonomous - have control over their own actions

 Social - able to interact with other agents

 Pro-active - take initiative without human

intervention and respond to change in environment

Simplest example of software agent could be the Animated

Help Agent in Microsoft Word which learns from user’s

previous interactions and then recommend actions

accordingly.

A Mobile Agent, namely, is a type of software agent, with the

additional feature of mobility. More specifically, a mobile

agent is a process that can transport its state from one

environment to another, with its data intact, and be capable of

performing appropriately in the new environment. When a

mobile agent decides to move, it saves its own state, trans-

ports this saved state to the new host, and resumes execution

from the saved state.

Figure 1 shows the use of Mobile Agent for the processing of

data at three different locations without the transfer of the data

to be processed. Instead of data going to the process, it is now

that the process itself goes to the location of the data which

saves a lot of network bandwidth.

We chose the concept of Mobile Agents for my project for the

following reasons:

Figure 1. Mobile Agents

Mobile agents are software agents that are able to roam
network freely and to spontaneously re- locate themselves
from one device to another.

 Mobile agents have much in common with malicious
programs.

 Similar to worms and viruses, they have the ability
of relocating themselves from one computer to
another.

 They are also autonomous as the worms are.

Hence we used mobile agents and their properties for the
purpose of transferring and executing malicious code from
one system to another in our simulation environment.

We used JADE (Java Agent Development Frame- work)
which a multi agent platform based on Java which compiles
with the The Foundation for Intelligent Physical Agents
(FIPA) specifications.

Java Agent Development Framework, or JADE, is a
software framework for multi-agent systems, in Java that has
been in development since at least 2001. The JADE platform
allows the coordination of multiple FIPA-compliant agents
and the use of the standard FIPA-ACL communication
language.

JADE is completely implemented in Java language and the
minimal system requirement is the version 1.4 of JAVA (the
run time environment or the JDK). JADE is free The latest
version of JADE is JADE 4.0 released on 20/04/2010
distributed by Telecom Italia, the copyright holder, in open
source software under the terms of the LGPL (Lesser General
Public License Version 2).

JADE proved to be a good choice for our Malware
Simulation project because:

32

Proc. of the Second Intl. Conf. on Advances in Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-034-7 doi: 10.15224/ 978-1-63248-034-7-31

 it had all the agent features that we needed (and
more)

 communication between mobile agents running on
various workstations on the network was trivial to do

 it is efficient and tolerant of faulty programming

 it follows FIPA standards

 the user group is very active and implementors
typically respond to problems within 24 hours

After downloading and extracting the Jade folders onto a
computer in the network, it is necessary to install and run
"ANT". Ant is a build tool which runs on XML files in order
to compile the java source files (present in JADE) and creates
a desired deployment structure. Ant version 1.8.0 is freely
downloadable from: http://ant.apache.org/

For running ANT, it is necessary to set the three
environment variables, namely ANTHOME: ant’s di- rectory,
PATH: ant’s bin directory, JAVAHOME: jdk directory of
Java.

When we run ant, it acts in accordance with the build.xml
file present in the Jade directory and com- piles all the source
files to create corresponding class files. Ant creates the desired
deployment structure of all the class files as specified in the
build.xml file by putting them into respective output
directories. After running ant, we can launch the container and
agents therein.

For launching Jade, first of all we set the CLASS- PATH
to include the JAR files in the lib subdirectory and the current
directory.

Now in order to launch Jade on the main container we use
the following command:

java jade.Boot -gui

And similarly to launch Jade on another host in the
network we use the following command:

java jade.Boot -host 8.1.3.1 -container where

8.1.3.1 is the IP of the system on which the main container is
launched.

Each platform must have a Main Container which holds
three specialized agents called the AMS agent, the DF agent
and the RMA agent.

In a nutshell, Using Jade we run various agents on
different containers. Containers are the host computers in the
network on which Jade is running. There is one Main
Container and then all the other terminals in the network
connect to this Main Container. Communications between
containers in the same platform (i.e. attached to the same Main
Container) in JADE uses RMI and requires full connectivity
i.e. each container must be able to open a socket to all other
containers in the platform.

Once JADE has been successfully installed and launched
on all the systems of the experiment net- work, we launch

mobile agent on the main container using the MobileAgent
class provided with Jade. After launching mobile agent on the
main container, it can be easily moved onto any of the other
containers by using the MOVE option provided in the mobile
agent GUI. When we move a mobile agent to a new container,
the GUI disappears from the main container and is showed off
at the desired container.

We used this mobility feature of the mobile agent in JADE
to transfer and affect malware from the main container to any
other container on the network. Thus in a way, the main
container acts as the attacker system and all other computers
on the network are its victims.

At the boot time of JADE, I transfer one batch file using
RMI from the main container to the other container which

a. acts as a RMI file client

b. gets a malware file from a specified location of the
main container to the container on the MOVE event of mobile
agent

c. Executes this malware file at the container

The batch file gets executed at the MOVE event of the
Mobile Agent and when the mobile agent moves to any of the
desired victim container, this file acts as a RMI FileClient and
fetches a virus called "act- movie.exe" from a specified
location of the Main Container. Next this virus is made to
move to the system32 folder of the victim computer and then
at last executed to cause the harm.

In order to transfer and run the batch file when the mobile
agent moves, we extended the MobileAgent class present in
the classes/examples/mobile folder of the JADE directory to
write our own MobileAgent class.

We analyzed the MobileAgent class and found that an
"aftermove" function runs when a mobile agent is transferred
from the main container to another container. We override this
"aftermove" function while extending the MobileAgent class
to execute the batch file at the targeted container. Thus, when
the mobile agent migrates from the Main Container (attacker)
to any other (victim) container, the malicious program gets
executed and the victim container gets compromised.

After importing the java.lang.* and java.io.* packages, the
runtime class is used to run a batch file.

Besides, we also wrote few virus codes directly into the
MobileAgent.java file (in Java) at the "aftermove" function
which gets executed automatically when the mobile agent is
migrated. These Java viruses have the advantage of not
getting detected by any of the antivirus softwares as the only
process they commence is Java.exe which does not have any
malicious signature.

IV. Analysis And Results
In order to affect the computers on the network, we

experimented with n-number of malware programs which

includes various viruses, trozans, scripts etc.

33

Proc. of the Second Intl. Conf. on Advances in Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-034-7 doi: 10.15224/ 978-1-63248-034-7-31

For this purpose, we created a lot of viruses in VBScript, Java

and few using Virus Generation Pro- grams.

Following gives a brief list of the viruses used in our project

with little description of each:

 CDROM Eject.vbs - This virus created using

VBScript opens the CD-ROMS (as many as are

there) of the compromised computer once it gets

executed there. And the worst part is that it does not

even let the user close the CDROM. If the user closes

the CDROM, it gets opened again. This was done

using the "oWMP.cdromCollection” class of

VBScript and then using the Eject function therein

within an infinite for loop.

 Notepad.bat - This simple virus infinitely opens

Notepad on the compromised computer. This was

done using goto label in the batch file which makes

the execution process jump back to where the

Notepad.exe is being called. This exhausts the

processor of the compromised computer and finally

the computer hangs.

 ColoredCommandPrompt.bat - This virus opens up a

command prompt on the compromised computer

and starts drawing colourful lines over it. This covers

up the complete screen and devoids the user from

accessing even the Desktop. Ctrl+Alt+Delete is the

only choice to get rid off.

 Screenshot.java - This virus, written in Java directly

into the aftermove function of the mobile agent file,

takes a screenshot of the desktop screen of the

compromised computer and pre- pares a jpeg file of

the same. This way important information can be

stolen from the Desktop of any remote PC. The virus

as written in Java cannot be detected using any

antivirus. In this code, we used the

createScreenCapture function provided in the robot

class in Java.

 Shutdown.java - This simple virus shuts down the

compromised computer without any choice left for

the user, not even the time to save any unsaved work.

It simply makes use of the run- time class of java to

execute the shutdown command at the remote

computer. As the virus code is written in the mobile

agent file in Java, again it gets tough to detect it.

 Corrupt.java - This java virus when acts at the

MOVE of the mobile agent, searches for all the

.class files on the victim computer and corrupts them

by adding unnecessary into them. Dangerous for java

programmers to handle.

 CDROMEject.java - This one is similar to the

CDROMEJECT.vbs virus except that it is written in

Java and hence becomes difficult to be detected.

 Consume.java - This java virus consumes the

complete processor and makes the victim computer

handicapped with no space left for other running

applications. At slower processors, even the Task

Manager cannot be initiated to kill the Java.exe

process to stop its effect.

 In the code, we create one thread using the Thread class in

Java and then set its priority to (Thread.MAXPRIORITY)

using the setPriority function in the Thread class. Then we run

this thread into an infinite while loop thereby consuming the

complete processing capability of the compromised computer.

 Shutdown.java - This one is also similar to Shut-

down.bat except for the fact that it was written in

Java using the Runtime class.

 CrazyMouse.exe - This virus was created using a

virus generation program JPS Virus Maker. It is a

.exe virus which makes the mouse of the infected

computer bubbling like Crazy and hence the user

looses complete control over the mouse pointer.

 DisableCommandPrompt.exe - This virus disables the

command prompt of the infected computer until next

reboot. It was also created using the JPS Virus

Maker.

 DisableControlPanel.exe - This virus disables the

Control Panel of the infected computer leaving the

user surprised. The only solution left is to restart the

computer. It was also created using the JPS Virus

Maker.

 DisableStartButton.exe - As obvious from the name,

this virus disables the start button from the Taskbar

and hence devoids the user from using the Start Menu

and Programs. It was also created using the JPS

Virus Maker.

 SwapMouseButtons.exe - This annoying virus swaps

the function of the two mouse clicks. The right click

acts as the left click and the left click acts as the right

click. It was also created using the JPS Virus Maker.

We collected a total of 6000 viruses from different

sources over the internet and tried to simulate their malicious

affects using the mobile agents. Besides, we also tried to

analyse the harmful affects of few trojans for e.g. Mellisa as a

effect of which computer starts producing infected documents.

As a part of experiment we also downloaded API Monitor tool

from www.rohitab.com/apimonitor.

34

Proc. of the Second Intl. Conf. on Advances in Computing, Electronics and Electrical Technology - CEET 2014.
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-034-7 doi: 10.15224/ 978-1-63248-034-7-31

API Monitor is a free tool which can be used to mon-

itor and display API calls made by applications. We used this

tool for observing the System Calls made to DLLs during the

execution of our malicious pro- grams.

Thus as a result of all this exercise, we observed the

actions performed by various malicious software such as

scanning for vulnerabilities of operating system or verifying if

certain conditions are met and then executing themselves for

some destructive purpose.

V. Conclusions
In the paper we have presented Mobile Agent Malware

Simulator using JADE, developed to address our need for
simulation process to be applied during the experiments
aiming at evaluation of security threats to computer networks.

The framework is based on the technology of mobile
agents, which appears to be particularly suitable for this
application due to numerous similarities (such as mobility,
autonomy etc.) between agents and malicious programs and
because of the features of agent platforms which facilitate
performance of experiments.

Our system provides multiple classes of mobile agent
and diverse behavioural and migration/replication patterns, to
be used for implementation of various malware. At its current
state, the repository of agent classes and behaviours contains
just basic malware implementations for viruses and worms.
However, in the foreseeable future we are going to extend the
repository, providing agent classes and behaviours of other
malicious programs. Also in near future, we plan to
extensively use the API Monitor Tool in order to prepare a
comparison table of the various API Calls made by various
malicious and benign programs. Usage of SNORT as an
intrusion detection engine is also a planned activity.

During the work we also noticed some compatibility issues
among the various operating systems, such as the Windows
XP container was not compatible with the container created on
Windows 7,while using the Remote Method Invocation
protocol.

References

[1] R. Leszczyna, I. N. Fovino, and M. Masera, “MAlSim–Mobile Agent

Malware Simulator,” in Proc. of 1st International Conference on
Simulation Tools and Techniques, Marseille, France, March 03-07,
2008.

[2] A. Wagner, T. D. Aubendorfer, B. Plattner, and Roman Hiestand,
“Experiences with worm propagation simulations,” in Proc. of 2003
ACM workshop on Rapidmalcode, pp. 34-41, New York, USA, 2003.

[3] D. Chess, C. Harrison, and A. Kershenbaum, “ Mobile agents: Are they
a good idea?,” Technical Report RC 19887, IBM Research,
Yorktown Heights, New York, 1994. Available at cite-
seer.ist.psu.edu/chess95mobile.html.

[4] S. Franklin, and A. Graesser, “Is it an agent, or just a program?: A
taxonomy for autonomous agents,” in Proc. of Workshop on Intelligent
Agents III, Agent Theories, Architectures, and Languages, pp. 21-35,

Berlin, Germany, 1996. Available at cite-
seer.ist.psu.edu/franklin96is.html.

[5] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Transactions on Software Engineering, vol. 24(5), pp. 342 - 361,
1998. Available at citeseer.ist.psu.edu/ fuggetta98understanding.html.

[6] D. S. Milojicic, “Trend wars: Mobile agent applications,” IEEE
Concurrency, vol. 7(3), pp. 80 - 90, 1999. Available at
http://dlib.computer.org/pd/books/ pd1999/pdf/p3080.pdf.

[7] R. Leszczyna, “Evaluation of agent platforms.,” Technical report,
European Commission, Joint Research Centre, Institute for the
Protection and security of the Citizen, Ispra, Italy, June 2004.

[8] S. Gordon, “Are good virus simulators still a bad idea?,” Network
Security, vol. 1996(9), pp. 7-13, 1996.

[9] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa, “Jade
programmerSs guide,” February 2003.

[10] B. S. Yee, “ A sanctuary for mobile agents,” in Proc. of DARPA
Workshop on Foundations for Secure Mobile Code, Monterey, USA,
March 1997.

[11] R. Leszczyna, “Evaluation of agent platforms,” Technical report,
European Commission, Joint Research Centre, Institute for the
Protection and security of the Citizen, Ispra, Italy, June 2004.

