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Abstract — In this paper, we present a method increasing the 

potential of robust stability of control systems of spacecraft with an 

approach to the construction of two-parameter system in the class of 

structurally stable maps. Research of robust stability is produced by 

using the method of Lyapunov functions, based on geometric 

interpretation of the second Lyapunov method and definition of 

system stability in the state space.  

For research of the stability of steady states of spacecraft control 

system we using the ideas of the second method A.M. Lyapunov and 

define components of the gradient vector of the Lyapunov function. 

During the research, we will represent Equations of state in 

deviations relative to the stationary states. The general problem of 

Lyapunov functions for investigation of the systems with 

improved capacity of robust stability is defined and a condition of 

stability is given. 

We propose a method for construct the control system of 

spacecraft, built in the two-parameter class of structurally stable, 

which will be sustained indefinitely in a wide range of uncertain 

parameters of the control object. This work presents novelty 

theoretical fundamental results assisting in analyzing of the behavior 

of control systems, meaning of robust stability.  

Keywords—control system, robust stability, increased 

potential of robust stability, structurally stable mappings, 

geometric interpretation. 

I. Introduction  
The problem of stability under conditions of uncertainty is 

a center piece in the design of automatic control systems. They 

are widely used in almost all areas of manufacturing and 

technology: mechanical engineering, energy, electronics, 

chemical, biological, metallurgical and textile industries, 

transportation, robotics, aircraft, space systems, military 

equipment and high-precision technologies, etc. At the same 

time, uncertainty can be caused by imprecise knowledge of the 

true values of the parameters of the controlled plant or their 

unpredictable changes in the process of operation of the 

system. Therefore, the problem of robust stability [1,2,3] is 

one of the most pressing issues in control theory and is of 

great practical interest. In general, research of robust stability 

includes identification of specific constraints for changing 

parameters of the control system, which preserve stability. 

These constraints are determined by the region of stability for 

uncertain parameters of control systems [1,2,3]. 

Real control systems are nonlinear, and one of the basic 

properties of nonlinear dynamic systems is generation of 

deterministic chaos [4,5,6]. Chaotic systems represent the 

class of models with uncertainty. Conditions of robust stability 

of these systems allow the presence of instability regions of 

the stationary states of the control system. The general 

problem of conditions of suppression or elimination of chaotic 

oscillations from the process development scenarios by 

application of control efforts still remains unsolved [7,8,9]. 
It is generally recognized that real control system are 

designed and fabricated under the conditions of significant 

parametric uncertainty; therefore, increasing robust stability 

characteristics of the system [10,11,12] is one of the key 

factors that prevents it from causing deterministic chaos, 

which forms strange attractors [4] . In dynamic systems with 

linear approximation it manifests itself as the loss of stability 

of the zero steady state. 

Therefore, when significant uncertainty is an issue, it 

becomes crucial to develop models and methods of control 

system design with sufficiently wide range of robust stability, 

called control systems with high potential of robust stability 

[10,11,12]. The concept of control system with increased 

potential of robust stability is based on the results of 

catastrophe theory [13,14], which studies basic structurally-

stable mappings. 

This article is focused on design and research of control 

systems with high potential of robust stability applied to 

dynamic objects with uncertain parameters. It discusses an 

approach to control system synthesis in the class of two-

parameter structurally stable mappings [15,16,17], that allows 

maximum increase of the limit  of  robust stability 

characteristics of the system. 
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Recent research demonstrates that robustness of linear or 

non-linear control systems can be successfully studied by 

using the method of Lyapunov functions [18,19], based on 

geometric interpretation of the second Lyapunov method and 

definition of system stability in the state space. It is assumed 

that the origin of our system of coordinates corresponds to 

natural motion of the system, and state equations are written 

with respect to perturbations, i.e. deviations in perturbed state 

from the unperturbed [18,19,20,21]. Therefore, state equations 

express the rate of change of the vector of perturbation 

(deviations). In case of a stable system, the vector that shows 

the rate of change of disturbance is directed toward the origin. 

At the same time, the vector of gradient of the desired 

Lyapunov function is directed towards the greatest increase of 

the function, i.e. for a stable system will always be pointed in 

the opposite direction. This allows us to represent the original 

dynamic system in the form of a gradient system, and the 

Lyapunov function in the form of the potential energy surface 

[13] from the catastrophe theory. Research of robust stability 

of control system with uncertain parameters is based on the 

theorem of asymptotic stability [18,19]. 

II. Main mathematical model  
Let us consider a linear model of a spacecraft [22] and 

construct a control system with high potential for robust 

stability in the class of two-parameter structurally stable 

mapping [12,13], i.e., a system described by the following 

equations [10,11]: 



































.

,

,

,

,

,

6

2

6

2

6

1

6

4

65

2

5

2

5

1

5

4

5
6

6
5

4

2

4

2

4

1

4

4

43

2

3

2

3

1

3

4

3
4

4
3

2

2

2

2

2

1

2

4

21

2

1

2

1

1

1

4

1
2

2
1

xckxckcxxckxckcx
dt

dx

x
dt

dx

xbkxbkbxxbkxbkbx
dt

dx

x
dt

dx

xakxakaxxakxakax
dt

dx

x
dt

dx

            (1)  

The control law for each channel of the spacecraft is 
proposed in the form of two-parameter structurally stable 
mappings [11,12] in the form: 

.6,...,1,2214  ixkxkxu iiiiii
                                   (2)                                                                        

We can demonstrate that the system given by (1) and (2) 
can be used to determine the area of robust stability of the 
spacecraft control system with respect to parameter variations 
and provide extremely wide range of stability for uncertain 
parameters, i.e., the control system prevents the spacecraft 
from entering the mode of deterministic chaos [15,16,17], 
even under wide-range variations of uncertain parameters. 

Find the steady states of the system from the following 
equations: 
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   (3)        

One stationary state of the system (3) is 

.0,,0,0,0,0 654321  SSSSSS xxxxxx           (4) 

Other stationary states of the system (1) can be determined 

by solving the equation 

 

.6,...,1,013  ikxkx iiSiiS
                                  (5) 

As we know from catastrophe theory [13] the solution of 

equation (5) correspond to critical points of the cusp 

catastrophe function defined by the formula 

.6,...,1

,0),,( 221421





i

xkxkxkkxf iSiiSiiSiiiS                (6) 

Critical points, double-degenerate critical and triple-

degenerate critical points of the cusp catastrophe (6) are found 

by equating the respective first, second and third derivatives of 

degeneracy (6) to zero. 
Condition (6) is satisfied at critical points 

6,...,1,024 213  ikxkx iiSiiS
                                    (7) 

and 

6,...,1,0212 12  ikx iiS
                                           (8) 

and also at double-degenerate critical points. Condition (7), (8) 

and  

6,...,1,012  ixiS
                                                         (9) 

are satisfied at triple-degenerate critical points. 

Position of the point in the parameter space that describes 

the function with triple-degenerate critical point is defined as 

.6,...,1,000)9( 2
)7(

1
)8(

 ikkx iiiS
             (10) 

The relevant function 4)0,0,( iSiS xx   has a triple-

degenerate critical point at the origin. 
Points in the parameter space, which parameterize 

functions with double-degenerate critical point, are determined 

from the equation (8), (7). 

.6,...,1,86)8( 32
)7(

21  ixkxk iSiiSi
               (11) 

If the position of the double-degenerate critical point is 

denoted by 
iSx , equation (11) gives the values 1

ik  and 2

ik , 

which describe the functions with double-degenerate critical 

point iSx . 
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Equation (11) define parametric representation of the 

relationship between 1

ik  and 2

ik , which describes the 
function with a double-degenerate critical point 

iSx . 

More direct expression that links 1

ik  and 2

ik can be 

obtained by excluding 
iSx  from (11): 
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 As known by elementary algebra, a cubic equation (5) can 
have up to three real solutions of the form  
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Hence, taking into account (12), equation (5) has a 
solution: 
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III. The robust stability conditions 
for spacecraft control system 
based on geometric approach of 
the Lyapunov function 

 

3.1 Stability of stationary states (4) 
To investigate robust stability of the steady states (4) and 

(13) of the system given by (1), we can use the approach 

reported in [15,16,17] that relies on geometric interpretation of 

the method of Lyapunov functions. Using the geometric 

interpretation of the gradient vector of the Lyapunov function 

and the velocity vector of the system under study, we find: 
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Full time derivative of the Lyapunov vector-function can be 

found by taking the state equation (1) into consideration as 

follows: 
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Expansion of the velocity vector into the coordinate form 

results in the following components 
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Full time derivative (14) of the vector function is 

guaranteed to be a negative-definite function. 

Using the gradient of the vector function, we can formulate 

the components of the Lyapunov vector function 
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The Lyapunov vector function can be presented in the 

scalar form as follows 
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According to the Morse theorem [13,14], function (15) can 

be replaced by a quadratic form. By skipping relatively 

simple, but time-consuming expansion of the function given 

by (15) in the vicinity of the steady state (4) and finding the 

elements of the Hessian matrix, the quadratic form is written 

as: 
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Condition for the existence of a positive-definite Lyapunov 

vector function is defined by the inequalities: 
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3.1 Stability of stationary states (13) 
 

As the next step, we investigate robust stability of another 

steady state given by (13). To achieve this, the state equation 

(1) is written to describe deviation with respect to the steady 

state (13). By skipping the time-consuming procedure of 

expansion and finding derivatives at stationary points, the state 

equation can be written for deviations as: 
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 Next, we find components of the gradient vector 
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Specify the projection of the speed vector on the 

coordinate axes 
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Using this representation of the gradient vector of the 

Lyapunov function and the velocity vector (17) and its 
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projections on the coordinate axes full time derivative of the 

Lyapunov function can be written as 
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With this approach, full time derivative of the Lyapunov 

vector function (18) is guaranteed to be negative-definite; 

therefore, sufficient condition for the Lyapunov asymptotic 

stability is always met. 

Using the components of the gradient vector, we can build 

components of the Lyapunov vector function: 

 

 

,
2

1
)(,2

2
3

25

1
2

2
3

25

1
)(,

2

1

2

43

2

2

2

2

3

2
3

2
2

2

4

2
3

2

25

2

2

1

2

1

3

1
3

2
2

1

4

1
3

2

15

12

2

21

xxVxakx
k

a

x
k

aaxxakx
k

a

x
k

aaxxVxxV

































 

,2
2

3
25

1
2

2
3

25

1
)(

2

4

2

4

3

4
3

2
2

44

4
3

2

45

4

2

3

2

3

2

3
3

2
2

34

3
3

2

35

34

xbkx
k

bx
k

bbxxbk

x
k

bx
k

bbxxV































 

.2
2

3
25

1
2

2
3

25

1
)(,

2

1
)(

2

5

2

5

3

5
3

2
2

54

5
3

2

65

5

2

6

2

6

3

6
3

2
2

64

6
3

2

65

66

2

65

xckx
k

cx
k

ccxxck

x
k

cx
k

ccxxVxxV































 

The Lyapunov function in the scalar form can be 

represented as 
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      (19)           

 

According to the Morse theorem [13,14], after performing 

time-consuming calculation of the Hessian matrix, the 

Lyapunov function (19) can be represented in the following 

quadratic form.  
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The condition of robust stability of the system given by 

(17) can be obtained by taking into account the negative-

definite time derivative (18) of the Lyapunov function (19) or 

(20) in the form 
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Thus, the control system of the spacecraft, built in the two-

parameter class of structurally stable mappings for a linear 

system is stable for indefinitely wide ranges of parametric 

uncertainty and; therefore, it assures avoidance of 

deterministic chaos in the system. Stationary state (5) is stable 

when parameters of the spacecraft vary in the range defined by 

(16) and the stationary state (13) and in various combinations 

of them (5) acquires the properties of the steady state (5), and 

at the same time, they are not sustainable. Stationary states of 

the spacecraft (13) will be stable only if the inequality (21). 

 

IV. Conclusion 
In this research was created control system with increased 

potential linearized robust stability of the spacecraft with 

uncertain parameters, with the approach to creation of control 
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system in two-parametric class of structurally stable mappings 

of catastrophe theory and shown maximum increase of 

potential of robust stability. 

For the study of robust stability of control systems with a 

high potential is applied a new approach to the creation of 

Lyapunov's vector function based on the geometric 

interpretation of the theorem on asymptotic stability in the 

state space. Terms of robust stability control system with 

increased potential robustness space vehicle obtained in the 

form of simple inequalities that define the conditions for the 

existence of Lyapunov's vector function. The control system 

can ensure the stability of any change of uncertain parameters 

of the spacecraft. 
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